
Senior Design 22’-23’
Autonomous Guitar

ECE Group 30 / CS Group 42

Pedro Contipelli CS
Blake Cannoe CpE
Ethan Partidas CpE
Jonathan Catala EE
Kyle Walker EE

Team Sponsor
Self-sponsored

Table of Contents
1. Executive Summary 1

2. Project Description 2
2.1. Overview 2
2.2. Student Motivations 3
2.3. Design Goals 4
2.4. Objectives 4
2.5. Requirement Specifications 5
2.6. House of Quality 7
2.7. Class Diagram 9
2.8. Hardware Block Diagram 10
2.9. Software Use Case Diagram 10

3. Technology Investigation 11
3.1. Related Works 11

3.1.1 Demin Vladimir’s Guitar Robot 11
3.1.2 TECHNICally Possible’s Lego Mindstorms Guitar 12
3.1.3. MegCell’s Guitar Robots 13

3.2. Software Investigation 19
3.2.1. Viable Time Complexity Calculation for Algorithm 19
3.2.2. Programming Language Investigation 21

3.2.2.2. C++ 21
3.2.2.3. Java 21
3.2.2.4. Python 21
3.2.2.5. MicroPython https://micropython.org/ 22

3.2.3. Parsing MIDI File Bytes Data Stream 22
3.2.3.1. Mido Library 22
3.2.3.2. Pygame 22
3.2.3.3. PythonInMusic Documentation 22
3.2.3.4. MIDIFile 23

3.2.4. Microprocessor Communication 23
3.2.4.1. Serial Communication 23
3.2.4.2. Serial Communication Comparison - BC 29
3.2.4.3. WIFI 29
3.2.4.4. Bluetooth 30
3.2.4.5. Wireless Comparison 30
3.2.4.6. PWM 31

3.3. Hardware Investigation & Considerations 32

3.3.1. Guitar 32
3.3.2. Single Board Computers 32

3.3.2.1. Raspberry Pi 3 Model B 33
3.3.2.2. Onion Omega 2 33
3.3.2.3. Odroid XU4 33
3.3.2.4. Asus Tinker Board 33
3.3.2.5. Libre Computer Board 33

3.3.3. Microcontrollers 34
3.3.3.1. Arduino Due 34
3.3.3.2. MSP430FR6989 34
3.3.3.3. ESP32 35
3.3.3.4. STM32 35

3.3.4. Comparison Table 35
3.3.5. Motor Control 36

3.3.5.1. 74HC595N (Shift Register) 36
3.3.5.2. L293D (Motor Driver) 36
3.3.5.3. PCA9685 (PWM/Servo Driver) 37

3.3.6. Motors 37
3.3.6.1. Servos 37

3.3.6.1.1. Servos Linear Actuator 37
3.3.6.2. Solenoids 38
3.3.6.3. Lead Screw Drive 39

3.3.6.3.1. Lead Screw Drive Linear Actuator 39
3.3.7. Power 39

3.3.7.1. Power Demand 40
3.3.7.1.1. TalentCell Rechargeable 12V 6000mAh 41
3.3.7.1.2. Amazon Basics 9 Volt Everyday Alkaline Batteries 41
3.3.7.1.3. Lead Acid - 12V 8A ExpertPower 41

3.3.7.2. Linear Voltage Regulator 42
3.3.7.2.1. LP2985 42
3.3.7.2.2. LP5912-EP 42
3.3.7.2.3. Custom Linear Regulator 43
3.3.7.2.1. Diode protection 44
3.3.7.2.2. Heat sink 45

3.3.8.3. Switching Regulator 46
3.3.8.3.1. TPS62992-Q1 46
3.3.8.3.2. TPS568231 47
3.3.8.3.3. Custom Switching Regulator 48

3.3.8.3.4. Boost Converter 48
3.3.8.3.5. Buck Converter 49

3.3.8.4 DC Power supply 50
3.3.8.5 AC Power supply 51
3.3.8.6 Op-Amp as a Regulator 51

3.3.9. Signals Technologies 51
3.3.9.1 BJT/MOSFET Amplifier Circuits 51

3.3.9.1.1. MJD44H11AJ 52
3.3.10. 3D Printed Parts 53

3.3.10.1. CAD Software 56
3.3.10.1.1. SOLIDWORKS 56
3.3.10.1.2. Fusion 360 56
3.3.10.1.3. FreeCAD 56
3.3.10.1.4. OpenSCAD 57

3.3.11. PCB Design 57
3.3.11.1 Circuit Simulation Software 58

3.3.11.1.1 LTSpice 58
3.3.11.1.2 PSpice 58
3.3.11.1.2 Multisim 59

3.3.11.2 PCB CAD Software 59
3.3.11.2.1 Autodesk EAGLE 59
3.3.11.2.2 Fusion 360 60
3.3.11.2.3 KiCad EDA 60

3.3.11.3. Part Production 60
3.3.11.3.1. Digikey 61
3.3.11.3.2. PCBWay 61
3.3.11.3.3. OSH Park 61

3.3.11.4 Assembly & Final Implementation 61
3.3.11.4.1 - Wiring to/from/between PCBs 62

3.3.12. LCD 62
3.3.12.1 I2C LCD 16x2 Adapter 63

3.4. Possible Electronics Architectures 63
3.5. Possible Hardware Architectures 65

3.5.1 Hardware Option 1 65
3.5.2 Hardware Option 2 65
3.5.3 Hardware Option 3 66
3.5.4 Hardware Path Moving Forward 66

3.6. Plug in Power 66

3.7. Guitar Mount Building Material 67
3.7.1. Lego Brick Mount 67
3.7.2. K’Nex Mount 68
3.7.3. Wooden Mount 69
3.7.4. 3D Printed Mounts 70
3.7.5. VEX Robotics Mounts 71

4. Constraints & Standards 72
4.1. Constraints 73

4.1.1 Economic/Time Constraints 73
4.1.2 Environmental Constraints 73
4.1.3 Social Constraints 73
4.1.4 Political Constraints 73
4.1.5 Ethical Constraints 74
4.1.6 Health and Safety Constraints 74
4.1.7 Manufacturing Constraints 74
4.1.8 Sustainability Constraints 75

4.2. Standards 76
4.2.1. Design Standards 76

4.2.1.1. MIDI Audio Storage Standard 77
4.2.1.2. UART Communication Protocol Standard 77
4.2.1.3. Bluetooth Standard 78
4.2.1.4. WIFI Standard 78
4.2.1.5. C Standards 78
4.2.1.6. Python Standards 79
4.2.1.7. Guitar Tuning Standard 81
4.2.1.8. Electrical Component Standards 81

4.2.1.8.1. PCB Standards 81
4.2.1.8.2. Soldering Standards 83

4.2.1.9. Power Supply Standards 85
4.2.1.10. 3D Modeling and Printing Standards 86

4.2.1.10.1. STEP File Standard 87
4.2.1.10.2. STL File Standard 87
4.2.1.10.3. SOLIDWORKS File Standards 87

5. Hardware & Software Design Details 88
5.1. Hardware Design & Part Details 88

5.1.1. Mechanical Components 88
5.1.2. Power Supply 88

5.1.3. PCBs 89
5.1.3.1.1. Component Size 90

5.1.3.2. PCB Size 90
5.1.3.3. PCB layers 90
5.1.3.3 Motor Assemblies Voltage Regulator 91

5.1.3.3.1. Motor Assembly Voltage Regulator PCB 93
5.1.3.4 Microcontroller Voltage Regulator 94

5.1.3.4.1. Microcontroller Voltage Regulator PCB 95
5.1.3.5. Wire Selection 96

5.1.3.5.1. Resistivity 96
5.1.3.5.2. Gauge of the Wire 97

5.1.3.6. Passive Component Supplier 98
5.1.3.6.1. Power Components 98
5.1.3.6.2. Low Noise Components 99
5.1.3.6.3. Power Supply Switch 99

5.1.3.7. Power Configuration 99
5.1.3.8. Signal Configuration 100

5.1.4. Microcontroller 103
5.1.4.1 Wireless Communication for Microcontroller 104

5.1.5. Circuit Design 105
5.1.6. 3D-Printed Mounting Hardware 107

5.2. Software Design 110
5.2.1. Algorithm 110

5.2.1.1. Range Compression 110
5.2.1.2. Handling Self-Overlapping Notes 112
5.2.1.3. MIDI to 6-string and fretting conversion 112

5.2.2. User Interface or UI 112
5.2.3. Cross-Platform Mobile Application 112
5.2.4. Development Environment 113

5.2.4.1. uPyCraft IDE 113
5.2.4.5. Diagrams.net 114

5.2.5. Microcontroller Code 114
5.2.5.1. Micropython and C integration 116
5.2.5.2. Microcontroller libraries 118

6. Prototype Construction & Coding 120
6.1. Hardware 120

6.1.1. Linear servo motor 120
6.1.2. 3D Designing the Prototype 120

6.1.3. Physical Prototyping 120
6.1.3.1. Mounting System 121

6.2. Electronics 121
6.2.1. Power Supply 121
6.2.2. Circuit Prototyping 122

6.3. Software 123
6.3.1. Algorithm Prototype and Construction 123
6.3.2. User Interface Prototype and Construction 123
6.3.3. Mobile App Prototype and Construction 124

6.4. Integrated Prototyping 125
6.4.1. Controlling Servos with Micropython, ESP32, and Shift Register 126

6.4.1.1. Micropython Code 126
6.4.1.2. ESP32 Programming 126
6.4.1.3. Breadboard Wiring 126
6.4.1.4. Prototype Takeaways 127

6.4.2. Controlling Servos with Arduino C, ESP32, and Shift Register 127
6.4.2.1. Arduino C Code 128
6.4.2.2. ESP32 Programming 128
6.4.2.3. Prototype Takeaways 129

7. Prototype Testing & Evaluation 130
7.1 Hardware Testing 130

7.1.1. Initial Motor Testing 130
7.1.1.1 Strumming Assembly Testing 130
7.1.1.2. Fretting Assembly Testing 131

7.1.2. Power Supply Testing 131
7.1.3. Integrated Circuit Testing 131

7.1.3.1. Shift Register Testing 131
7.1.3.2. Motor Driver Testing 131
7.1.3.3. Bluetooth Testing 132
7.1.3.4. LCD Testing 132
7.1.3.5. PCB Testing 132

7.1.5. ESP32 Benchmarking 133
7.1.6. Note Pitch/Frequency Testing 133

7.2. Hardware Evaluation 134
7.2.1. Note Pitch/Frequency Evaluation 134

7.3 Software Testing 136
7.4 Software Evaluation 136

8. Project Operation 137
8.1. Operating Modes 137
8.2. Error Correction 138

9. Administrative Content 139
9.1. Division of Labor 139
9.2 Project Milestones 140

9.2.1. [Fall] Senior Design I 140
9.2.2. [Spring] Senior Design II 141

9.3 Gantt Charts 142
9.3.1. Senior Design I [Fall 2022] 142
9.3.2. Senior Design II [Spring 2023] 142

9.4 Budget/Financing 143
9.4.1. Bill of Materials 143

74HC595N shift register 143
1602 LCD 143

10. Project Summary & Conclusions 144
10.1. Project Summary 144
10.2. Design Summary 144
10.3. Engineering/Design Conclusions 145
10.4. Philosophical Conclusions 145

11. Broader Impacts 147

12. Legal, Ethical, and Privacy Issues 148
12.1. Legal Issues 148
12.2. Ethical Issues 148
12.3. Privacy Issues 148

13. Facilities and Equipment 149
13.1. Facilities 149
13.2. Equipment and Materials 150

13.2.1. George Washburn Lyon Acoustic Guitar 150
13.2.2. 30 Micro-Servo Motors 150
13.2.3. ESP32 2.4 GHz Dual Core WLAN WiFi + Bluetooth Microcontroller 38PIN
Narrow Version 151
13.2.4. Breadboard 152
13.2.5 24 3D-Printed Linear Actuators for MG90s Servo 152
13.2.6 Custom-Designed PCB 153
13.2.7. 4 Shift Registers (74HC595N) 153

13.2.8 Power Supply 154
13.2.9. Oscilloscope 154
13.2.10. Digital Multimeter 154
13.2.11. Other Miscellaneous Electrical Components 154
13.2.12. Universal Laser Cutter & Dimension 3D Printer 155

14. Consultants, Subcontractors, and Suppliers 156

Appendices 156
Appendix A: References 157

15. Section 4.2.1.1. MIDI Audio Storage Standard 158
16. Section 5.2.5.1. Micropython and C integration 158

Appendix B: Copyright Permissions 158
Appendix C: Purchase Links 158
Appendix D: Datasheets 158

List of Tables
Table 1: Correlation between Objectives & Goals
Table 2: Requirement Specifications
Table 3: Table of Quality Model
Table 4: I2C and SPI comparison
Table 5: Comparison between WiFi, Bluetooth, and BLE
Table 6: Single Board Computer and Microcontroller Comparison
Table 7: Comparison Between Hardware Design Options
Table 8: Constraints
Table 9: Standards
Table 10: Clearance Tolerances Outlined in ICP-2221 (via protoexpress.com)
Table 11: Power Supply Circuit Definitions (via CUI)
Table 12: Component Voltage and Current Demand
Table 13: Motor Assembly Component Values
Table 14: LCD Screen States
Table 15: Project Milestones for Senior Design I (Fall 2022)
Table 16: Project Milestones for Senior Design II (Spring 2023)
Table 17: Bill of Materials

List of Figures
Figure 1: Playable Note Range for Requirement Specifications
Figure 2: Functional Class Diagram
Figure 3: Functional Block Diagram
Figure 4: Software Use Case Diagram

Figure 5: Denim Vladimir’s Guitar Robot
Figure 6: TECHNICally Possible’s Lego Mindstorms Guitar
Figure 7: MegCell First Prototype
Figure 8: MegCell 2nd Iteration Prototype
Figure 9: MegCell Strumming Arm Mechanism
Figure 10: MegCell Difficulty Fretting Close Together
Figure 11: MegCell Updated Strumming Assembly
Figure 12: MegCell Updated Fretting Assembly
Figure 13: Fret Override
Figure 14: UART Structure For Autonomous Guitar
Figure 15: SPI in Parallel
Figure 16: SPI in Daisy Chain
Figure 17: I2C Configuration for Electric Guitar
Figure 18: Assembly for Conversion of Rotational Servo Motion to Linear Actuation
Figure 19: Lead Screw Drive X-Ray Model
Figure 20: Custom Linear Regulator
Figure 21: Linear Regulator with Voltage Protection
Figure 22: Heat Sink Attached to a Regulator
Figure 23: Boost Converter
Figure 24: Buck Converter
Figure 25: Servo Placement In Strumming Assembly
Figure 26: Servo Placement in Fretting Assembly
Figure 27: Personal Computer Architecture
Figure 28: Single Board Computer Architecture
Figure 29: Motor Driver Architecture
Figure 30: Servo Architecture
Figure 31: Example Lego Mount Construction
Figure 32: Example K’Nex Mount Construction
Figure 33: Example Laser-Cut Wooden Servo Motor Mount Construction
Figure 34: 3D Printed Mount Construction
Figure 35: VEX Robotics Example Construction
Figure 36: Clearance vs Creepage on PCBs (via protoexpress.com)
Figure 37: Model of Exemplary PTH solder
Figure 38: Component Sizes with Dimensions
Figure 39: 4-layer PCB diagram
Figure 40: Motor Assembly Voltage Regulator
Figure 41: PCB Design Interface
Figure 42: PCB for Motor Assembly
Figure 43: Wire Gauge Diagrams with Corresponding Currents
Figure 44: Power Configuration
Figure 45: Example Signals using 800° Rotations for Strumming Assembly
Figure 46: Example Signals using 180° Rotations for Fretting Assembly
Figure 47: Example Signals using 90° Rotations for Fretting Assembly
Figure 48: Circuit Design Diagram Prototype
Figure 49: 3D Printed Servo Mount Prototype
Figure 50: Strumming Servo Mount Prototype

Figure 51: Fretting Servo Mount Prototype
Figure 52: MIDI Representation Visualized
Figure 53: Playable Note Range Visualized on Piano (Synthesia)
Figure 54: Microcontroller Code Block Diagram
Figure 54.5: C integration into micropython
Figure 55: Example Power Supply Used for Testing
Figure 56: MIDI file processing in Python using MIDO library
Figure 57: Simple Initial UI Prototype for Controller
Figure 58: Simple Song Selector Prototype for Controller
Figure 59: Cross-Platform Mobile App Example using Flutter
Figure 60: Breadboard Wiring Diagram
Figure 61: Arduino IDE Preferences Menu
Figure 62: ESP32 Package in Boards Manager
Figure 63: ESP32 Dev Module in Boards Manager
Figure 64: Pano Tuner App from Google Play App Store
Figure 65: Unicorn CPU Emulator Testing for MicroPython
Figure 66: File Upload in Project Operation
Figure 67: Senior Design I (Fall 2022) Tasks Gantt Chart
Figure 68: Senior Design II (Spring 2023) Tasks Gantt Chart
Figure 69: George Washburn Lyon Acoustic Guitar
Figure 70: Micro-Servo Motors Purchased
Figure 71: ESP32 Purchased
Figure 72: 3D-Printed Linear Actuator GrabCAD by Luca Delbarba Feb 28th 2022
Figure 73: Example Shift Register Render
Figure 74: Example Oscilloscope used for Debugging
Figure 75: TI Innovation Lab Equipment
Figure 76: TI Innovation Lab in Engineering Building at UCF

1. Executive Summary
This document outlines the ideas, motivations, design considerations, and
implementation details of ECE Group 30 / CS Group 42’s Senior Design project. The
end goal is to build a fully functional autonomous self-playing guitar using a combination
of both hardware and software implementation. By nature, this is an interdisciplinary
project. Our main objective is to be able to take any valid MIDI file and play those notes
by fretting and strumming all 6 strings independently on an acoustic guitar (without
self-interference). Specifications include being able to play all 29 valid notes between
E2 and G#4, giving us a range of about 2.33 octaves.

We will accomplish this by using a custom algorithm written in Python to take MIDI data
and convert it in realtime to playable notes on the guitar the exact start timing and
duration of each note. This code will then run on a microprocessor that is connected to
both the strumming motor assembly and fret motor assembly. The strumming assembly
will consist of 6 servo motors positioned to pluck at each string. And the fret motor
assembly will consist of servo motors with linear actuators positioned at fret locations
1-4 on each string. In total, giving us 30 unique playable combinations = 6 strings *
(4 fret positions + 1 open string) and totaling 29 unique notes (B3 is repeated), as
demonstrated in the below calculation.

29 = 6 * (4 + 1) − 1

As this is a student-led and self-sponsored project, our budget is mostly limited to what
we as students can afford: which we estimate will be around $200 across the 5 of us.
There are little to no consumer products available at the moment which do this.
However, there are a few hobbyists who have built similar machines as personal
projects and posted videos of it on YouTube. Essentially, all projects of this nature are
simply built for fun, entertainment, and as a personal challenge rather than for mass
consumption. We will have the final design document report completed by the end of
Senior Design 1: December 5th 2022. We would like to have our minimum viable
product ready by halfway through Senior Design 2: February 24th 2023. And have the
final product ready and presentable by one month before the end of Senior Design 2:
March 24th 2023.

1

2. Project Description
The below section serves as the detailing of our project. It provides an overview of the
project and personal motivations before going into detail about its goals and the
objectives we have laid out in order to achieve them. In order, the section provides an
overview of the project and a summary of our motivations, which then leads into the
specific goals that we wish to achieve to realize our design. Following that are the
specific objectives we have laid out in pursuit of those goals before going into the
specific requirement specifications that we will adhere to throughout our time in Senior
Design in order to ensure that the project works as intended and is fully reproducible
and testable. The section ends off with supplemental material in order to better
elucidate the broad strokes in what the project will ultimately look like.

2.1. Overview
The goal of this project is to create an autonomous self-playing guitar that is able to
produce its own music. We have seen and taken inspiration from videos on YouTube of
similar projects such as Demin Vladimir’s Guitar Robot and TECHNICally Possible’s
Lego Mindstorms Guitar, and intend to build on the design concepts utilized by these
projects; improving upon them to create a design that is our own.

The system would be able to take in MIDI files and play the notes on the guitar using
separate mechanisms for strumming and pressing select strings against frets. It would
be lightweight and maintain the general form factor of the guitar (i.e, fits closely to the
body). The design should ideally be portable, and thus it would be powered by portable
batteries. It should be responsive enough to accurately replicate the provided MIDI file
compositions, comparable to - if not exceeding - the abilities of the average learnt guitar
player. Not only should this design be lightweight and portable, an issue with similar
concepts is the price and size. They are typically not an attachment for a guitar and are
more commonly an entire unit within the guitar. They are also extremely expensive with
some models going for up to $1,100. Our goal for this project is to bring this idea to
reality for significantly cheaper.

One challenge that presents itself by nature of the project is the mechanical
considerations that we must tackle. Being an interdisciplinary group made up of
Electrical Engineering, Computer Engineering and Computer Science majors with no
significant mechanical engineering classes present within our curriculum, we will have
to perform significant investigations into how we will make the parts move in the way we
want them to. However, we know that similar projects have been realized before and
with dedication we will see to it that ours is as well.

2

https://youtu.be/n_6JTLh5P6E
https://youtu.be/cXgB3lIvPHI
https://youtu.be/cXgB3lIvPHI

2.2. Student Motivations
Our time in Senior Design offers the unique opportunity to apply the techniques we’ve
learned throughout our undergraduate programs into a system that interests us
personally. In this way, we sought to pursue a project that would not only be technically
challenging but also be creative and, ultimately, fun to put together.

Pedro Contipelli - My motivation for this project was that I wanted to bridge two very
different fields that I am extremely passionate about: engineering and music. I felt this
project would be the perfect choice for our team to put our knowledge and skills to the
test, to create something that can be appreciated from both a scientific and human
perspective.

Blake Cannoe - I used to play guitar in middle school. I thought this idea sounded like
an interesting project.

Ethan Partidas - I want to do a project that has a large vertical scope, from the
high-level software algorithm all the way down to the mechanical challenges of playing a
guitar with motors. I find all these fields interesting, which is part of the reason I chose to
study Computer Engineering in the first place; it combines computer science and
electrical engineering into one degree program. I have dabbled with 3D modeling in
CAD software before, so I’m excited to get more experience with that in this project.

Jonathan Catala - I am interested in this project due to the multidisciplinary nature of
this project. It gives us the best look at an actual work project we could do. Due to this I
believe this project will be beneficial to develop my engineering skills.

Kyle Walker - My dad played guitar throughout most of his life & also motivated me to
become an engineer, so it seemed like a cool way to combine those two things. It
provides an opportunity to finally put my electrical engineering experience learned from
class to work in the real world, and to come up with something that we can be proud of.

3

2.3. Design Goals
Our ultimate goal for this project is to modify a guitar with electronics to be able to play
itself. In pursuit of this we want our project to be:

● Able to reliably play digital audio data. This is the ultimate factor that will
determine the functionality of our product. It should be able to take data in,
interpret that data as musical notes, and then play those notes using the guitar
that the design is built on.

● Portable. We want our design to fit the general form factor of a guitar, not
departing from how a guitar looks; we don’t want to create a device for the
machine floor, but rather still want it to resemble a guitar once all is said and
done.

● Lightweight. We do not want the design to weigh too much. We still want the
product to be held like a guitar, and too much weight would take away from that.

● Affordable. As we are a collection of undergraduate university students, we want
to minimize the cost investment into the product - especially for prototyping and
moving from the minimum viable product to final presentation.

● Reliable. Ideally, we would want our design to require as little maintenance as
possible in order to present to the Senior Design board. A high enough fault rate
would consume too much time to fix which would be better spent prototyping and
refining the final product.

2.4. Objectives
To realize the above goals, our project must:

1. Be built on an acoustic guitar
2. Be battery powered
3. Take MIDI file input over USB
4. Process MIDI files using a Microcontroller
5. Play a wide range of notes
6. Utilize servos for mechanical action (strumming and fretting)
7. Be able to strum all 6 strings either at once or independently
8. Be able to press frets to play individual notes
9. Use 3D Printed assembly parts

4

Table 1 below shows which objectives correlate to each goal organized by the index of
each objective. In effect, we want to make sure that the meeting of each of these
objectives during our project’s development means that we reach each of the goals
detailed in the section above.

Goals 1 2 3 4 5 6 7 8 9

Plays Audio Data ✓ ✓ ✓ ✓ ✓ ✓

Lightweight ✓ ✓ ✓

Affordability ✓ ✓ ✓

Portability ✓

Table 1: Correlation between Objectives & Goals

2.5. Requirement Specifications
The following Table 2 outlines the specifications laid out for our project. It gives us
targetable and testable metrics that we can use to gauge the success of the project. As
our design begins to take shape, we will be looking to maintain these specifications
through thorough testing of a minimum viable prototype. Once we are at a comfortable
place, we will transition to our final product.

As we begin our implementation of our project we will be looking to see if our
requirement specifications are feasible. In making the planning and implementation
stages as we try to maintain our requirements some may change, this could be due to
some unforeseen circumstance we have not accounted for during our planning stage,
once the assembly begins we will be able to see how obtainable some of these our or
see if they can be adjusted slightly to ensure a working final product.

Below Table 2 is a figure detailing all the notes that we will be aiming to play with our
design. As detailed in our project overview, this gives us a range of about 2.33 octaves,
however other octaves may be pursued as part of a stretch goal in the future.

5

Specification Measurement

Minimum fretting force 3N

Maximum fretting force 5N

Electrical components weight 3 pounds

Battery weight 2 pounds

MIDI File Size 50 KB

Power consumed < 9W

Playable notes All notes between E2 and G#4 (see figure 1)

Minimum playing speed 2 notes per second per string

Maximum song length 3 Minutes

Battery Life 2 Hours

Reliability (as a function of Failure
Rate)

>90%

Output Pins > 26 pins

Max Voltage Output 24V

Max mounting system weight 20 lbs

Total cost <$500

Max height of mounting system 1 ft

Power supply DC batteries

Response times of servos 1ms

Table 2: Requirement Specifications

6

Figure 1: Playable Note Range for Requirement Specifications
https://yousician.com/blog/guitar-fretboard-learning-guide

2.6. House of Quality
Table 3 on the following page details the House of Quality model used to outline our
project’s specification requirements. The House of Quality model is used to weigh the
effects that each engineering specification has on each market specification, alongside
the effect that each engineering specification has with one another. Note that, as our
project is self sponsored, it will be us who determine the market requirements: We want
our guitar to be able to play long, musically complex songs accurately while maximizing
the potential volume of the notes. We also want our guitar to be lightweight and
portable, while minimizing cost and power consumption.

As the implementation process begins we will be looking closely at all the relationships
that are there between all the different requirements, as we get further in the progress
we will keep the house of qualities updates as there could be some unforeseen
relationships that could have more or less relationship than previously assumed.
Through keeping this table updated weekly and especially as we begin to order parts
we will see if our original assumptions about the relationships between different
requirements is true and verifiable through testing.

7

https://yousician.com/blog/guitar-fretboard-learning-guide

Table 3: Table of Quality Model

8

2.7. Class Diagram
Figure 2 below is the block diagram of what components we are planning to have in the
guitar. It outlines the interaction of our hardware and software components and lays out
a birds-eye view for the total operation of the project by detailing how each part
contributes to the whole. A MIDI file is input to the microprocessor, where it is then
processed and turned into commands. These commands are passed to the servo
assemblies responsible for the strumming and fretting of each note.

Figure 2: Functional Class Diagram

9

2.8. Hardware Block Diagram
Below is the figure for the hardware block diagram, the PC connects to the
microcontroller through bluetooth using UART and the power supply needs to give
power to the microcontrollers and the servos. Since it will require a large amount of pins
for 30 servos we will need to use shift registers to control the signal from the PWM pins
to the Servos since we will not have enough pins otherwise.

Figure 3: Functional Block Diagram

2.9. Software Use Case Diagram
Provided here is the Software Use Case Diagram for the project. In effect, it outlines
how we will be interacting with the software of the guitar, providing input as well as state
transitions through operating the guitar while it is in the process of performing a given
song.

10

Figure 4: Software Use Case Diagram

3. Technology Investigation

3.1. Related Works
As mentioned in our project overview, some examples of self-playing guitars already
exist. In this section, we will be going over the design as evidenced by their appearance
in their respective demonstration videos, weighing their pros and cons and what design
philosophies we would like to integrate into our project.

3.1.1 Demin Vladimir’s Guitar Robot

Demin Vladimir’s Guitar Robot comprises a guitar with electronic components attached
to it in order to facilitate its own strumming and fretting. It is similar to our design, and
plays the entire possible range of notes using many solenoids. It is much more versatile,
but also more costly as a result of utilizing so many parts. The utilization of solenoids as
frets is a simplistic and functional design that would likely serve our design well if
integrated. Figure 3 below is a picture of the robot in action as seen on Youtube.

11

https://youtu.be/n_6JTLh5P6E

Figure 5: Denim Vladimir’s Guitar Robot
https://youtu.be/n_6JTLh5P6E

3.1.2 TECHNICally Possible’s Lego Mindstorms Guitar

The TECHNICally Possible’s Lego Mindstorms Guitar is also reminiscent of our final
design description, however what separates it from Demin Vladimir’s guitar robot is that
it utilizes Lego Mindstorms components. Lego Mindstorms is an extremely versatile
project design kit that allows for the easy assembly of projects such as this one. The
most notable downside to this configuration is that the combination of notes itself is
mechanically integrated into the design of the project - pegs are used to control the
fretting for specific chord combos, but in order to play another song these pegs must be
changed out manually. This greatly hampers versatility, but it comes with the benefit of
greatly reducing cost. The figure following on the next page is a picture of the
Mindstorms Guitar in action.

12

https://youtu.be/n_6JTLh5P6E
https://youtu.be/cXgB3lIvPHI

Figure 6: TECHNICally Possible’s Lego Mindstorms Guitar
https://youtu.be/cXgB3lIvPHI

3.1.3. MegCell’s Guitar Robots

MegCell on YouTube has recently been making big strides in the field of
servo-controlled self-playing guitar robots. He started off by mounting servos to a guitar
using popsicle sticks and controlling them with an Arduino. This already sounded great,
but he didn’t stop there. He has continued to iterate and improve on his design over the
last couple years, adding 3D-printed mounts and geared mechanisms to improve the
actuation of the servos on the strings.

13

https://youtu.be/cXgB3lIvPHI

Figure 7: MegCell First Prototype
https://youtu.be/g_dBuR2GiTA

This is his first prototype. It is very low tech, which is a big relief for us as far as the
feasibility of this project. It uses the same servos that we will likely end up using, and a
microcontroller similar to the one we will likely use. Of course, we would like our final
product to be more polished than this, and that’s where MegCell’s next iterations come
into play.

14

https://youtu.be/g_dBuR2GiTA

Figure 8: MegCell 2nd Iteration Prototype
https://www.youtube.com/watch?v=EFA9eQ3DfrU

This iteration has replaced the popsicle sticks on the strumming mount with 3D-printed
supports and tidy wiring. We also get a closer look at how the servos are placed,
front-to-front so that all 6 strings can be strummed as close to the center of the
soundhole as possible.

15

https://www.youtube.com/watch?v=EFA9eQ3DfrU

Figure 9: MegCell Strumming Arm Mechanism
https://www.youtube.com/watch?v=MpRi8xJrh24

This iteration adds a mechanism to the strumming arm. Instead of the servo strumming
the string directly, an additional part is added which travels in a somewhat circular path,
allowing the pick to move up and out of the way of the string once it has been
strummed.

16

https://www.youtube.com/watch?v=MpRi8xJrh24

Figure 10: MegCell Difficulty Fretting Close Together
https://www.youtube.com/watch?v=JQZKGL_aIY8

This design shows the difficulty in fretting the strings when they are so close together.
He has stacked the servos in 3 layers in order to be able to fret on such a small area.

17

https://www.youtube.com/watch?v=JQZKGL_aIY8

Figure 11: MegCell Updated Strumming Assembly
https://www.youtube.com/watch?v=yCJw_BHz3-o

This is a new design for the strumming assembly. Each string actually has 2 servos
dedicated to it. One to strum the string, and one to move the other servo slightly
upwards, so that the string is strummed in a linear path rather than a circular one.

18

https://www.youtube.com/watch?v=yCJw_BHz3-o

Figure 12: MegCell Updated Fretting Assembly
https://www.youtube.com/watch?v=MLX7lxt5xa8

Here we can see a very clever design for the fretting. Each servo is geared to two arms,
so they can each control two notes.

3.2. Software Investigation

3.2.1. Viable Time Complexity Calculation for Algorithm

One fact that may not be well-known to the average layman but every beginner guitarist
learns is that, on each string, only the fret position played that is furthest down the neck
actually affects the pitch of the note when that string is plucked or strummed (frets are
counted starting at the tip or head of the guitar and going “down” towards the sound
hole and bridge, from the 1st fret to the 20th+ [depending on the guitar]). As shown in
the diagram below, the blue ‘x’s are not actually affecting the pitch of the note played on
those strings, as they are being “overridden” by the fingers pushing down on the higher
frets.

19

https://www.youtube.com/watch?v=MLX7lxt5xa8

Figure 13: Fret Override
https://nationalguitaracademy.com/how-to-play-bar-chords/

What this means for the purposes of designing an algorithm to consider every possible
valid yet unique-sounding combination of notes that can be made using the first four fret
positions on each string is that we only need to consider the “highest” fret played on
each string. This leads to a much smaller total number of combinations than if we had
naively considered all O(2^n) technically possible up/down states for each fret on every
string. So the calculation goes as follows: (4 fret positions + 1 “open” string a.k.a. no
frets played)^(6 strings) = 5^6 = 15,625*. The * is one caveat because technically the
note “B” played by the open 2nd or aptly-named “B” string is actually equivalent to the
note played by the 4th fret position on the 3rd or “G” string. So the technically correct
calculation gives us the even smaller 5*5*5*4*5*5 = 12,500 uniquely sounding
combinations. However, since it would be programmatically nontrivial to actually only
generate combinations which consider that one exception without any extra
computation, we will choose to ignore it and maintain a still very viable upper bound at
O(5^6) = 15,625 combinations. Considering our requirement of a playing speed of 2
notes per second per string simply means that we’d like our algorithm to be able to go
through approximately 15,625*2 = 31,250 combinations per second. Assuming that
each combination takes approximately one CPU operation or O(1) time, this number
gives us our minimum speed of runtime in operations per second that we will need for

20

https://nationalguitaracademy.com/how-to-play-bar-chords/

our algorithm, which as it turns out, is actually very realistically feasible for a
microprocessor to carry out.

3.2.2. Programming Language Investigation

3.2.2.1. C

C, being a relatively low level language is a good option as it could interface well with
the hardware, providing an easy way to directly control our motor outputs via pins from
the microprocessor. It can also provide very fast processing, allowing us to even write
our algorithm to go through every possible fretting / open-string combination (5^6 =
15,625 combinations) in mere milliseconds (assuming it can process approximately
100,000,000 operations per second). In fact, with C, we may even consider a less
efficient algorithm of exponential time complexity O(2^N) where N is the number of frets
we plan on being able to press down on (24), since 2^24 = 16,777,216. Whereas with a
slower language we wouldn’t be able to process notes/chords fast enough for most
songs. Some drawbacks of using C, however, would be developer cost / engineering
velocity / debugging time as C doesn’t have very verbose error logging, usually just
throwing seg-faults and it is also difficult to manage memory correctly.

3.2.2.2. C++

C++’s advantages and disadvantages are similar to that of C’s, unsurprisingly. However,
the code is slightly less readable to developers without prior understanding of C++ and
we think in this case, we can achieve good enough runtimes with a more verbose and
easily understandable language, so it doesn’t really provide the kind of tradeoff we
would be looking for.

3.2.2.3. Java

Java provides a runtime in between that of C/C++ and Python, though it does inherently
involve a large amount of boilerplate, and essentially forces an object-oriented structure
which will most likely not necessarily be necessary for the purposes of our algorithm.
What really matters to us the most in terms of choice of programming language would
be that we can easily work together in both writing and debugging code while
maintaining it very readable and following good standard practices in terms of coding
style.

3.2.2.4. Python

Python offers us great libraries for interfacing with practically any microprocessor and
very simple, clean, readable code that anyone on the team can read and understand,
allowing for better communication and teamwork. In terms of efficiency, it is the slowest
language we consider, however we strongly believe that we can write an algorithm that

21

is efficient enough to do all the processing since with a conservative estimate Python
can still handle about 500,000 operations per second without much trouble. This will be
enough for our use case, since there are only about 5^6 = 15,625 unique finger-fret
placement combinations (not to mention very few of those would actually be
well-defined chords which create musically harmonious notes). An algorithm which goes
through every single possible combination to find what the best one would be to play is
viable in Python, at about 500,000 / 15,625 = 32 possible chords played per second.
We figure that the speed capacity of the actual motor assemblies and hardware would
be much more limiting than this, essentially being the bottleneck of the actual output of
the autonomous guitar much more than any programming language’s floating
operations per second speed would affect it.

3.2.2.5. MicroPython https://micropython.org/

MicroPython is an implementation of Python 3 (including some parts of the Python
standard library) specifically designed and optimized to run on microcontrollers. It would
allow us to use a comprehensive list of many useful features such as an interactive
prompt, arbitrary precision integers, closures, list comprehensions, generators, and
exception handling. And would also be compact enough to fit and run within 256
kilobytes of disk space and 16 kilobytes of RAM (Random Access Memory). It should
also aid with development speed in terms of the technical scope and reducing the
overall learning curve as it is designed to allow transferring code very easily from a
desktop computer to a microcontroller or embedded system. We can also very quickly
simulate real MicroPython code on the CPU emulator provided by
https://micropython.org/unicorn/ for starting software development and testing before
the parts have actually arrived, reducing one of our main anticipated blockers on
progression on the software side of things.

3.2.3. Parsing MIDI File Bytes Data Stream

3.2.3.1. Mido Library

We can use the Mido Library for parsing MIDI files using the documentation found at
https://mido.readthedocs.io/en/latest/parsing.html.

3.2.3.2. Pygame

We can also use Pygame for parsing MIDI files as shown in this example
https://www.daniweb.com/programming/software-development/code/216979/embed-and
-play-midi-music-in-your-code-python. Although this approach seems to be more for
playing the file rather than giving us the individual low-level control we’d like for parsing
individual notes and sending them over to the guitar.

3.2.3.3. PythonInMusic Documentation

22

https://micropython.org/
https://micropython.org/unicorn/
https://mido.readthedocs.io/en/latest/parsing.html
https://www.daniweb.com/programming/software-development/code/216979/embed-and-play-midi-music-in-your-code-python
https://www.daniweb.com/programming/software-development/code/216979/embed-and-play-midi-music-in-your-code-python

“This page is divided in three sections: Music software written in Python, Music
programming in Python, and Music software supporting Python”
https://wiki.python.org/moin/PythonInMusic
This is the main page we are referencing for all our music library needs. It contains a
plethora of good resources that will be instrumental in building and debugging our
project’s operation as well as sound quality.

3.2.3.4. MIDIFile

https://pypi.org/project/MIDIFile/ provides a very simple MIDI file parser and interface for
retrieving individual notes which would be a great tool. However, the developers have
said “It is known to run on MacOS and Linux. It should run on Windows, but then,
nothing is certain when Windows is involved, is it? Attempts to make it run on Windows
are at your own risk.” so we will have to be wary of any errors due to the operating
system choice as we are all running Windows computers.

3.2.4. Microprocessor Communication

3.2.4.1. Serial Communication

The autonomous guitar needs to have a way to receive a MIDI file from the computer to
the microcontroller attached to it where the user can specify the file to send and send a
signal to start or to stop playing the song, There are multiple methods of serial
communication including UART, SPI and I2C. For our purposes UART will be needed
and SPI could potentially be used.

3.2.4.1.1. UART

Universal Asynchronous Receiver Transmitter (UART) is a serial communication
module that is used to transmit and receive serial data; it can also take parallel data and
turn it into serial data. It is built into most microcontroller devices, UART transmits 8 bits
at a time where for every 8 bits there is a start and stop bit for the transmitter to read.
UART is only capable of communicating with one other device but uses a full duplex
communication system so it can send or receive data at the same time it also can use
any other communication mode such as simplex and half duplex. Most of our
communication with a PC and the microcontroller will be one way so the ability to send
data back to the computer is not very important but it could be useful for debugging
purposes. The receiver and transmitter for UART needs to have the same baud rate for
them to be able to communicate with each other. The range of UART is not very far but
we are expecting the PC transmitting data to be close by so it will not be a problem.
UART was meant for communication between two microcontrollers but a UART port can
be simulated using a program such as putty. When we use bluetooth or wifi to connect
the PC or smartphone to the MCU we can make this integrated into the program with
bluetooth or wifi.

23

https://wiki.python.org/moin/PythonInMusic
https://pypi.org/project/MIDIFile/

Most microcontrollers will have multiple UART ports on them; this is important because
UART only supports communication between two devices and parses that data to send
it serially instead of in parallel.

UARTs main use in this project would be to send the MIDI file over to the
microprocessor and get the response from the user to start playing the song and send a
bit back to the user when the song is completed. The user will first pick a MIDI file they
want the guitar to play from their PC then the MCU will receive a bit to start taking in the
MIDI file data from the computer. UART has a Rx and a Tx buffer for receiving and
transmitting, the guitar only needs to receive bits from the computer for the main
function of the guitar for the purposes of debugging we could send the MIDI data back
to the computer to see if they were changed into the proper note.

Figure 14: UART Structure For Autonomous Guitar

In figure 14, it shows what functionality UART will have with the autonomous guitar,
when debugging the code we will need to send a transmission from the MCU back to
the PC to debug what is happening with the algorithm or anything that is not working
correctly we will be using the software application PuTTy to read this information out
from the microcontroller. We will be sending the MIDI data from the PC to the
microcontroller, since all a MIDI file is, is a binary file to express which notes to play it
will be simple to send it over to the MCU rather than if we did this with a more complex
file format such as mp3 but in that case the same method still applies. The title of the
MIDI file must also be sent over the PC as well as commands to start and stop playback
and switching songs, but this can be done via sending an integer that will be the
command being sent as an instruction.

3.2.4.1.2. USB

For the autonomous guitar, the only system that can perform the function of UART is
USB, the benefit of USB over UART is that it is easier to debug the communication
between the program on the PC or mobile phone since the communication protocol will
be recognized by the computer, the downside of using USB is that it will not be able to
connect to a smart phone this way which makes using USB connection for the final
product not viable along with the fact that we want the autonomous guitar to be

24

completely wireless. For these reasons USB will be required for testing and not for the
final product. Most microcontrollers use the standard USB connector but some use a
micro USB connector this will make no difference to the autonomous guitar project but
micro USB connectors are not always as readily available as the standard USB
connector.

Another thing to be aware of is not every connector for micro usb has a serial
communication wire inside of it since many are used for chargers for devices that do not
need serial communication functionality. That being said, finding a micro usb connector
with a serial communication wire should not be a problem. Since Bluetooth cannot be
used to establish a connection to the com port to upload code to the microcontroller
using a usb connector will be necessary to upload the code to the microcontroller, as
well as for purposes of debugging UART functionality before the Bluetooth functionality
is added to the autonomous guitar.

3.2.4.1.3. SPI

SPI also has potential usage in the guitar, the microcontroller needs to control a total of
30 Servos for the guitar to be able to play the full range of notes, it also has to play them
fast enough to keep up with the speed of the song but the song will come out slowed
down from the original song and the microcontroller may not be able to control 30
Servos without the use of a shift register integrated circuit because of the lack of PWM
pins. In this case we could use SPI to handle the communication between the
microcontroller and the shift register. Unlike UART SPI can control multiple devices or
slave devices for each master which would be the microcontroller in this case. SPI also
uses 4 wires instead of 2 so it can transmit and receive data at the same time. SPI can
only have one master and it is short range, even shorter than UART it is meant to be
used between a master in this case an MCU and a slave which in the case of the
autonomous guitar is would be the shift register ICs or it will be needed for a LCD
screen which is one of our stretch goals. Also unlike UART SPI does not allow for error
checking in the bits that it sends and it does not acknowledge the transmission when it
is sent or received

The 4 wires available for use in SPI contain connections for MOSI (Master Out Slave
Input) which is the wire that the Master uses to transmit data to the slave. MISO (Master
Input Slave Output) which sends data from the slave to the master. SCLK (Serial Clock)
is used to to schedule the serial clock from the master to the slave for reasons of
synchronizing some process on the slave. CS (Chip Select) goes from the master to the
slave to select which slave the master wants to communicate with.

There are multiple configurations to use with SPI master-slave communication for
multiple slaves, because it is possible to use SPI with a potentially infinite amount of
slaves, we need to be sure that the microcontroller has enough SPI pins on them to
control all slaves. If there is enough SPI pins then all slaves can be wired in parallel to
the master and then the chip select can be set up in a way where each slave is
assigned to a different number and microcontroller can simply select the correct slave

25

with the correct chip select. If there are not enough SPI pins for the system the slaves
can be configured with the master in a daisy chain configuration in which MISO is sent
to one slave and then that data is sent down to the other slaves until it gets to all of the
slaves. The master is connects SCLK to all of the slaves so that their actions are
synchronized and the master CS to all of the slaves to select all the slaves.

Figure 15: SPI in Parallel

26

Figure 16: SPI in Daisy Chain

In Figure 15 and 16 it shows both common configurations of SPI. Using SPI in a daisy
chain requires less pins. Daisy Chain is more practical for our purposes since we will
not have enough pins otherwise unless we use two microcontrollers.

In the Autonomous guitar project it has a potential usage in our shift registers if it is
possible to make the response time faster than just using regular multiplexing to control
the Servos, if we were to use SPI we would have to use the daisy chain configuration to
connect the microcontroller to the shift registers because we will have 30 servos to
control and each shift register will only be able to control 4 each which means the
Autonomous Guitar will need 8 shift registers which means there will be 8 slaves. Also if
we do implement our LCD screen stretch goal we will be using SPI to communicate with
that as well. No microcontrollers that we have researched have had more than 3 or 4
chip select pins for SPI so daisy chain is the better configuration to use.

A shift register could also be used to implement SPI on the LCD screen but this
configuration would require 3 pins on the microcontroller board this is much better than
connecting it to the board directly but this is still not the minimum amount of pins we can
connect the LCD screen with, and the LCD is not going to be demanding on data
throughput.

3.2.4.1.4. I2C

27

The Autonomous guitar will have a LCD screen on the PCB however connecting an
LCD screen without any serial communication protocols requires us to use many of the
pins on our microcontroller. I2C allows us to do this with only 2 pins with its two wire
interface; one of those wires carry data and the other carries a clock signal. The
communication will be low range and the communication does not need to be fast as all
that it is needed for is to display messages on the LCD screen. This will work well for
controlling the LCD screen because models of LCD screens with a built in I2C model
exist or a I2C module can be bought separately to control the LCD screen. I2C has a
half duplex communication protocol which is not a problem for the autonomous guitar
because the master will not be expecting any data back from the slave device which is
the LCD screen.

The I2C module has an identical pinout to a 16x2 LCD screen and then the module
would need to be connected to the SDA and SCLK pins of the microcontroller to use
I2C and clear up pins which will be needed for the Autonomous Guitar servos. I2C also
uses less pins than SPI does and we do not need the extra speed or range that could
be given by SPI making I2C the better choice for the LCD screen. One potential
consideration of using I2C versus using SPI is the power consumption because
although I2C uses 2 pins instead of 4 with additional pins for extra devices unless the
design is daisy chained, I2C uses more power than SPI despite being slower.

There are also modules so that we can use the Servo motors with I2C which would
require the purchase of an additional module, using this method is more costly than a
SPI solution with a shift register.

Figure 17: I2C Configuration for Electric Guitar

In the figure above either option for Servo or LCD I2C will require the purchase of an
additional module, in our research we found no servo with built in I2C compatibility and
the communication protocol is important for the servo because we need to control many
of them and a communication method like SPI or I2C can help control these with the
ability to save pins that would need to be used for the servos.

28

3.2.4.2. Serial Communication Comparison - BC

SPI and I2C both perform the same function but there are things to consider when
implementing the protocol the things we need to consider include the following.

● Number of pins used is important since there are only so many pins on a
microcontroller that can support the communication protocols however most of
the time things can be done to reduce the pins needed.

● The data transfer rate is important because information needs to be sent to and
from the master device at a reasonable speed.

● We need to know the price since that is one of the biggest factors in the
feasibility of the implementation

● Our power consumption is limited by our requirements. It needs to stay inside the
range of those requirements.

SPI I2C

Pin Count 4 2

Data transfer Full-Duplex Half-Duplex

Speed 100 MHz Fast mode 400 KHz

Price More expensive Less expensive

Power consumption Consumes less power Consumes more power
Table 4: I2C and SPI comparison

In the table above are comparisons between SPI and I2C, SPI uses 4 pins at minimum
and that number can increase if slave devices are connected in the traditional fashion
compared to daisy chain, with I2C the two pins will only be two pins regardless of how
many devices are connected to it this can make setting up a I2C connection a bit more
complicated than setting up SPI. The autonomous guitar is not expected to send any
data back to the microcontroller, only from the microcontroller to the servos and the
LCD. The speed of an I2C connection can also vary where with SPI the speed is fixed
but can exceed the 100 MHz figure that is in the table. I2C could work in multiple speed
modes but fast mode is there just for a benchmark, even at ultra-fast mode the speed is
only 5 MHz. While I2C should be the more cost effective solution our research into parts
have shown that this is not the case for our application, the I2C modules are regularly
more expensive than buying shift registers to make an SPI connection because we can
just use a daisy chain wiring configuration to mitigate the need for extra pins that would
be needed to connect each shift register.

3.2.4.3. WIFI

29

Most microcontroller boards support wifi. We can connect the microcontroller for the
guitar to transmit the MIDI file wirelessly. We need to create a wifi to serial bridge in the
microcontroller. This would be done using UART since most microcontrollers already
have functionality to use both but there are also many open source implementations
that can create this connection. We can connect the microcontroller to the PC via LAN
connection this way. This is a more complicated process then connecting the
microcontroller through Bluetooth even though WiFi has a higher file transfer rate which
could be used in our project, but WiFi has more power than the Autonomous guitar
would need. WiFi would require more configuration on both the microcontroller side and
on the PC side however we have been able to find an open source library that can
implement a WiFi to UART bridge. For the Autonomous Guitar it is also being assumed
that the PC transmitting the guitar is in a close proximity to the guitar that would not
need a LAN network to cover. WiFi is capable of transmitting over the same frequency
of 2.4 GHz as Bluetooth is capable of.

3.2.4.4. Bluetooth

Bluetooth is another way and probably the simplest way we can connect the
microcontroller to a computer. Bluetooth can be used with UART or SPI, many
microcontrollers have bluetooth capabilities built into them, Bluetooth modules can also
be bought separately and placed in a PCB.

Bluetooth works on a personal area network (PAN) and is used for many common
peripheral devices that would be used on a PC or a smart phone so most of these
devices will have Bluetooth capability built in. This makes Bluetooth a good solution for
getting the file and interacting with the electric guitar for the user. All the user would
have to do is pair the guitar to the PC and then send the file to the guitar over bluetooth
and that functionality would be built into the code, and the user will be able to initiate the
playing of the guitar over bluetooth as well. BlueTooth is slower than WIFI when it
comes to transferring files, this is because BlueTooth is low power and WIFI is not.

In addition to regular BlueTooth, there is also BlueTooth Low Energy (BLE) which uses
the same 2.4GHz frequency that Bluetooth does but activates a low power mode when
not being used much like a low power mode on a microcontroller itself. BLE works on a
client server model like regular Bluetooth does as well. Either Bluetooth or BLE will work
for the Autonomous guitar but being able to use BLE would be ideal because of the
decrease in power consumption as long as it can still transmit the MIDI file to the guitar
which it will still be able to do since the maximum size of MIDI file we will be using on
the device is 50 KB where BLE has a transfer speed of 1 Mbps.

3.2.4.5. Wireless Comparison

WiFi Bluetooth BLE

30

Frequency 2.4-5 GHz 2.4 GHz 2.4 GHz

Standard IEEE 802.11 Bluetooth SIG Bluetooth SIG

Max Data Rate 2.4 Gbps 3 Mbps 200 Kbps

Channel Width 20, 40, 80, 160
MHz

1 MHz 2 MHz

Range Long Short Very Short
Table 5: Comparison between WiFi, Bluetooth, and BLE

When comparing which wireless communication protocol we want to use for the
autonomous guitar WiFi looks like it is much faster than it would ever need to be to
perform the operations it needs to for the autonomous guitar. This however does not
take into account which WiFi mode it is in only a theoretical maximum data rate since
that would be too much to include in this table, there is also the issue of WiFi being
used by multiple devices at once which is something that can be worked around but it
makes it more complicated to set up the microcontroller to accept WiFi transmission,
with Bluetooth, the transmission is much shorter in range than with WiFi which means
that our PC or smartphone will need to close to the Autonomous guitar for it to work.
Without knowing what the WiFi or Bluetooth range is on the microcontroller it is difficult
to come up with numbers on an estimate of the range the autonomous guitar can cover
via a wireless connection, but it is safe to assume that WiFi will have the longest range,
then Bluetooth, then BLE. It is also known that WiFi will consume the most power if we
decide to use WiFi and Bluetooth and BLE do not consume as much power, this is
difficult to place in the comparison table as of right now since power consumption is
dependent on the microcontroller. The data rate is also something that will partially be
dependent on the microcontroller but this is not something that we expect to be a major
limiter for the Autonomous Guitar, the files that we are transmitting are very small
around the range of 50 KB and everything else that is sent will just be instructions for
the system such as start, stop, or switching modes.

3.2.4.6. PWM

Pulse Width Modulation (PWM) is the best way to control the output of the servos, and
the usage of PWM for servos is common due to the power consumption benefits of
PWM. since we have 30 servos required for our guitar to be able to play the full range of
notes, it will not be energy efficient if the servos are constantly getting 5V supplied to
them the entire time that they are active to pluck the string or press on the fret and it
may not be able to get through our requirement for being able to play a 3 minute song,
or it would just get the power supply very hot, to fix this we can use PWM to control the
voltage being sent to the servo by pulsing the voltage at a frequency and with a certain
size of duty cycle so that the servos are getting the voltage supply that they need to play
the guitar in a way that is not interrupted or with a lower power output on the force of the
servos on the strings and the power consumption of the system is improved. PWM

31

makes the voltage signal in the pin either be on or off in other words a zero or a one,
creating a duty cycle, so if the voltage signal is on for half the time it would usually be
without PWM it would be a 50% duty cycle for that pin. It is possible that the PWM duty
cycle could be set to be too small and then the servo would not receive enough power
to run its motor at the appropriate speed, so we would need to do testing to find the
minimum possible duty cycle for the power output of pins while not having a noticeable
effect on the servo’s operations.

All the microcontrollers that we looked at had dedicated PWM GPIO pins but a
microcontroller with 30 PWM pins for all the required servos is not something that we
are able to find. To solve this problem we could use a shift register or we could generate
software PWM for our servo control where we artificially create a pulse and a duty cycle
using the microcontroller clock and software interrupts to modulate the signal from the
microcontroller to create an artificial PWM where the software interrupt will periodically
cut off the connection to the servo according to the frequency that the clock will switch
the voltage to the servo off and on like a duty cycle would. This does have the drawback
of taking up more CPU power than hardware PWM would since the process is being
done by software instead of just cutting the voltage to reach the desired force but
whether that would be a problem for our application is something to consider.

PWM is also used for the purposes of controlling the servo rotation angle with the duty
cycle time, where we can alter the duty cycle to change the angle of rotation.

It is also possible to use PWM for the LCD screen to denoise the screen without a
potentiometer, this can be done by creating a low pass filter using a capacitor and
resistor and charging the capacitor based on the PWM duty cycle to reduce the noise
on the screen created by having too high of voltage.

3.3. Hardware Investigation & Considerations

3.3.1. Guitar

While not as technically complex as the rest of the project, the object of which guitar we
will use should still be looked into. One of our biggest concerns is budget, and guitars
have a massive price range. Electric guitars especially can be very expensive - thus,
acoustic guitars look like a good choice. This comes with the added benefit of less
electromagnetic interference, as components like magnetic pickups are excluded. In this
way we can reduce the noise that will be placed on signals, which can create issues for
our servos by making the transition between duty cycles less clear and ultimately
causing misreads.

3.3.2. Single Board Computers

Single board computers are an easy and versatile tool for any electronics project. They
have tons of I/O, networking support, and processing power. All of these things would

32

make our jobs easier. However, they tend to be somewhat costly, so they’re not ideal for
a finished product. Also, we will learn more from this project if we go with a simpler
device that involves more challenges for connecting it with everything else. Still, we will
investigate the specifics of a few single board computers and then compare them to
some microcontrollers, to get a good idea of whether it would be feasible to use a
microcontroller for this project.

3.3.2.1. Raspberry Pi 3 Model B

The Raspberry Pi runs a linux-based operating system called Raspbian which can run
python code out-of-the-box. It has USB ports which can be used for quick file transfer,
or can even be configured to take data and commands remotely via an internet
connection. Raspberry PIs are also in very high demand and are out of stock in most
places that we looked and were expensive where they were in stock.

3.3.2.2. Onion Omega 2

The Onion Omega 2 is an internet of things (IoT) module which functions mainly over
WiFi. It has no USB or similar ports. It does however use a linux operating system,
making it capable of running the high-level code. This is a lesser known module so it
has good availability on Digi-Key. It is also very small, allowing it to be integrated into
our PCB for maximum portability.

3.3.2.3. Odroid XU4

The Odroid XU4 is a very powerful computing board that can run full versions of Ubuntu
and Android. It sports 8 cores, making it the most powerful option on this list. If we
decide we need as much performance as possible based on our time complexity
analysis, this is a very good contender.

3.3.2.4. Asus Tinker Board

The Asus Tinker Board is very similar to the Raspberry Pi 3 Model B. It has pretty much
the same layout and many of the same features. The operating system it runs, Tinker
OS, is very optimized, so it can outperform the Pi. It usually costs about twice as much
as the Pi, but due to huge price inflation, it currently costs about half as much. This
board should be preferred over the Pi if we choose to go with one of the two. We will
likely only use the Pi if we happen to have an extra one on hand.

3.3.2.5. Libre Computer Board

This board is essentially a cheaper Raspberry Pi clone. The main difference to note is
that it does not have built-in wifi, so if we want to add a wifi feature later in the project
we’ll need to purchase a dongle for at least $10. Even with that added cost, it’s still

33

competitively priced. If we need to buy a board and our budget ends up tight, this is a
good option.

3.3.3. Microcontrollers

The microcontroller will run the high-level algorithm and output the control data for the
motors. It also uses the clock on the microcontroller to synchronize the frets and the
strings to play the full notes and properly time the motors to the flow of the song and to
do this we need to use timer interrupts which require use of the system clock, the type
of clock does not matter too much for this application but given the range of notes that
guitars can play at any time it may need to be something that we consider.

To control the motors we also need to use PWM to change the angle of the servo’s
rotation because if the motor turns too far it could break the string, or not far enough
and not make a sound on the string. The frets need to have PWM functionality as well to
not break the string and to hold the string down firmly enough to play the note, for this
we need the microprocessor to have enough PWM pins or have a way to implement the
functionality in software.

It is preferable to our application that the microcontroller has enough pins to control all
the motors on the strings and frets, but if not the motor control can be passed off to a
motor control stage. Since we want the guitar to work without an external device the
microcontroller must also be able to run the algorithm on the board itself.

Many microcontrollers can process MIDI files and play them if they have a module that
can output sound, but our project still requires that this data get converted into notes to
play on a guitar between 2 motors.

3.3.3.1. Arduino Due

The Arduino Due has a total of 54 GPIO pins of which 12 pins are analog pins and 12
are PWM pins the rest are digital, which would make it a good candidate for the motor
control system however some of the servo’s would need to be using a software PWM. It
has an Atmel SAM3X8E ARM Cortex-M3 CPU, and a 3.3V power rail and a 5V power
rail. I/O pins can only handle a maximum of 3.3V on this board which is something that
should be considered.

3.3.3.2. MSP430FR6989

The MSP430FR6989 is more of a microcontroller than a microprocessor. It can run
low-level C code. It is not designed to run a high level algorithm, if we were to use it, it
would need to be connected to a computer via, bluetooth, wifi, or a microcontroller
protocol like UART. since it is not optimal to run high-level code from this device it is not
the ideal solution since we want this to be a contained system.

34

3.3.3.3. ESP32

The ESP32 is a Wi-Fi- and bluetooth-enabled microcontroller, making it suitable for IoT
applications. It features up to 34 GPIO pins, meaning it could feasibly control all the
motors without the need for a shift register. It has support for many languages, including
Micropython.

3.3.3.4. STM32

The STM32 is a simple and cheap microcontroller that doesn’t really stand out among
the other options listed here.

3.3.4. Comparison Table

There are many options for the processor, so it helps to lay out the most important
information in a table. The cost is an obvious factor. For the programming, the speed
will determine how efficient the code needs to be. Pin count will determine whether we
need to use the shift registers, or if we can control all 30 motors directly. A USB-A port is
desirable for easily uploading MIDI files to the guitar. Wifi is an alternative option for this.
The programming language will determine what libraries we will be able to use. The
architecture may affect the difficulty of the programming.

Microprocessor Cost Speed Pins USB Wifi Language Architecture

Arduino Due $46 84 MHz 54 No No C 32-bit ARM

Asus Tinker
Board

$75 4 x 1.8 GHz 28 Yes Yes Any 32-bit ARM

ESP32 $15 160 MHz 34 No Yes Any 32-bit LX6

Libre Computer
Board

$45 4 x 1.5 GHz 35 Yes No Any 64-bit ARM

MSP430FR6989 $20 16 MHz 48-
83

No No C 16-bit ARM

Odroid XU4 $53 4 x 2.0 GHz
4 x 1.6 GHz

26 Yes No Any 32-bit ARM

Onion Omega 2 $29 580 MHz 18 No Yes Any 32-bit MIPS

Raspberry Pi 3
Model B

$156 4 x 1.2 GHz 26 Yes Yes Any 64-bit ARM

STM32 $12 240 MHz 37 No No C 32-bit ARM

35

Table 6: Single Board Computer and Microcontroller Comparison

3.3.5. Motor Control

Playing a guitar requires a high amount of dexterity. While this might be obvious to the
layman, it becomes an especially challenging engineering problem with the inclusion of
mechanical systems. Not only does a person have to either pluck strings individually or
strum multiple strings at once for chords, but they also have to simultaneously fret
(press down at the location corresponding to the note that needs to be played) which
introduces an enormous number of possible configurations (5^6 = ~15,000 for the
purposes of our project) for potential combinations of notes that can be played at once.
In addition to this, guitars are designed such that some fret positions on one string
overlap or correspond to the same note as playing a different fret position on a different
string. Thus, fret combinations for each chord can exist at multiple points along the neck
of the guitar, the only difference being a change in pitch between octaves. Ultimately
this means that, whichever parts we ultimately end up using, we will have to utilize a
number of motors in order to get the guitar to play. This could cause issues, since if the
microprocessor does not have enough pins to control every motor, we will need an
intermediate stage to take serial data from the processor and convert it into parallel
control signals - This stage will be our Motor Control. This stage would also require the
local placement of PCBs that would control power supply input so as to meet voltage
requirements for individual parts, whether that be in the form of voltage regulators,
transformers or amplifier circuits.

3.3.5.1. 74HC595N (Shift Register)

This serial-in, parallel out shift register would allow us to control all of the motors with
just 3 pins from the microprocessor. One sends the serial data, the second shifts the
data along the register, and the third forwards the data to the output pins. This
configuration is perfect for our purposes, because servo motors require a PWM signal.
We can shift the on and off states into the register and then forward them at the right
times to get the correct PWM duty cycles. Also, these shift registers can be
daisy-chained by connecting the last bit of one register to the serial input of the next.
This is important because we expect to use about 30 motors, each needing
independent control. Only about half of the considered single board computers and
microcontrollers would have enough pins to control all the motors alone.

3.3.5.2. L293D (Motor Driver)

Most motors have just 2 connections: power and ground. However, microcontrollers are
unable to supply enough power to drive a motor through their output pins. Because of
this, we need some kind of switching component that separates the inputs into 3
connections: power, signal, and ground. The obvious component for this is a transistor,
but we don’t have to go so simple. There exist integrated circuits with many transistors
inside that are configured specifically for controlling motors. The L293D is one of them.

36

This is the most common motor driver and we already have a few and we’ve confirmed
that they would work for our project. However, if we choose to use only servo motors for
our project, we will not be using this integrated circuit. The reason is that servo motors
each have a driver built into the casing. They need this driver because they do not
simply have on and off states, but can be configured to turn to any specific angle. The
driver decodes a PWM signal and moves the motor to a specific angle based on the
duty cycle of the input. As such, servos already have the separation of connections into
power, signal, and ground.

3.3.5.3. PCA9685 (PWM/Servo Driver)

Instead of handling the PWM control of servos ourselves, we can use this board. Via
I2C connection, our microcontroller can tell this board what angle to set each of the 30
motors and it will automatically generate the PWM signals for us. This greatly simplifies
the design of both our circuit and our code. The I2C interface will likely have a library
which both make the communication easy to work and and also faster than one we
could write ourselves, as libraries are often implemented in a fast programming
language like C in the backend. The only downside is the cost, which is $15 per board.
Each board controls 16 servos, so we would need to purchase 2 of them. The two
boards could be configured to different I2C addresses, so we could use a single bus to
control all the motors.

3.3.6. Motors

The crux of our projects relies on the mechanical components that will work the guitar.
There are a multitude of options on the market for turning electrical energy into
mechanical movement, which will be discussed below.

3.3.6.1. Servos

Servos are the easiest motors to work with. They have separate connections for power
and control, so it’s trivial to isolate the two. The power is simply 5V - likely, this will make
up the bulk of our power demand. The control signal is a PWM (pulse-width modulation)
signal with a period of 20ms and an on-time of roughly 0.6 to 2.3 ms. The duty cycle
determines the angle that the servo will attempt to move towards. Servos are also very
cheap, about $2 each.

3.3.6.1.1. Servos Linear Actuator

Servos rotational motion is good for strumming, but may not work well for fretting. If we
were to use these for fretting, we would need to design some kind of mechanism—likely
3D printed—to convert the rotational motion into linear motion. An example found on the
internet is given below.

37

Figure 18: Assembly for conversion of rotational servo motion to linear actuation
https://www.youtube.com/watch?v=MeILaIGI1es

This design is very good for our project. It orients the servo vertically, which allows us to
pack them closely together. This is important because the strings on a guitar are very
close together. Even placed side-by-side, we can only fit 3 servos across the width of
the neck of the guitar. The next advantage of this design is the mechanical advantage it
provides to the servo. Near the bottom of the linear movement, the servo is essentially
moving sideways, meaning it moves a large distance to create a very small movement
near the guitar string. This means it has a mechanical advantage. The benefits of this
are two-fold. Number 1, this will make it easier to achieve the proper amount of force on
the string and to tune it finely based on the final position of the servo arm. Number 2,
the decreased resistance on the servo motor itself will lower the passive power draw of
the servo, which multiplied over 30 servos will be great for the demands on our power
supply circuit. Our final model will likely be heavily based on this open-source design.

3.3.6.2. Solenoids

Solenoids essentially act as a push/pull arm, in this manner this is potentially the best
choice for pressing down on frets. Solenoids would be more efficient than the servos
due to the linear path they take, there is less room for error or chance it hits a
neighboring fret. Some challenges that come with the solenoid is the cost and
availability of them, they can vary from 5-20 dollars per solenoid which gets pricey with
29 needed in order to play frets. Additionally, solenoids typically have just 2 terminals,

38

https://www.youtube.com/watch?v=MeILaIGI1es

meaning we will need to use transistors or motor drivers like the L293 to isolate the
control signals from the power.

3.3.6.3. Lead Screw Drive

The term “Lead Screw Drive” refers to the use of a screw assembly to drive the linked
assembly along an axis. The lead screw is threaded through a hole in the assembly
along the travel axis. The mechanical action can be described as the inverse of
screwing in a bolt through a nut; rotational force is applied to the lead screw while the
angle of the assembly is held fixed in relation to the screw (And thus, the travel axis).
The assembly is forced along its movement axis by virtue of the threading linking it to
the screw - in this way, rotational energy is converted to linear energy. Because of how
the mechanism works, it would have to be used in tandem with a servo or another type
of actuator which creates rotational force.

The following figure 6 is a rough model demonstrating the construction of a lead screw
drive. The direction of linear travel depends on the direction of rotation of the leadscrew
- one direction moves the assembly forward, and the other direction moves it
backwards.

Figure 19: Lead Screw Drive X-Ray Model

3.3.6.3.1. Lead Screw Drive Linear Actuator

The most useful form that the Lead screw Drive can take for our project will be that of a
Linear Actuator, which is a self-contained part designed for the end production of linear
motion. These actuators vary in size, but are generally bulkier than solenoids. While
their lengthwise design might be less practical for finer mechanical actions such as
pressing frets, it would be useful as a slide for if we need to move a servo or servo
assembly for flexibility in fretting for notes. We will keep this option in mind if we were to
pursue a stretch goal involving more complex mechanical engineering for the project.

3.3.7. Power

39

Multiple considerations must be made when deciding which power source we will be
using. Major design principles we will consider will be portability (i.e, weight and size
profile) and charge duration. We also have to take into account what kind of impact the
load will have on our parts; Voltage can be easily regulated using circuits to fit part
specifications, but we must take care that not too much voltage is being dissipated
across parts if we do not want to burn them out. Thus, it is vital that we find a voltage
that minimizes power dissipation across parts. Noise will not be a major consideration,
as in our utilization of our signals as a power supply we will only be dealing with DC
signals. The impact of noise on our electronics will be further limited by usage of
regulators for meeting part voltage requirements, which can be designed with minimal
noise introduction to the system - however, as in any circuit, minimizing noise brings it
closer to the ideal model which is preferable if we want to better predict the electrical
behavior of the project and reduce time spent on trial-and-error.

3.3.7.1. Power Demand

As with all electrical applications, our project will require a power source. However,
major considerations need to be made in our selection in order to conform to our
primary objectives of sustainability and low failure rate. In our selection, we want a
power source that has a high enough voltage output to supply every component within
our project adequately (references for amplifier circuits, for instance), but we want to
make sure that power output is not so high that it puts our components at risk.

To begin, a good starting point to look at for our voltage demands is the MSP430
family; The microprocessor will be key to the success of our project and likely one of our
most sensitive components. Power failure or component damage would be intolerable,
and the MSP430 being one of the most popular microprocessor family brands on the
market gives us a good reference point - most microprocessors within the MSP430
family accept ranges from 1.8V to 3.6V.

In addition to this, most servo motors - the kind that we will be utilizing for our project -
typically require 5V to operate, so that leaves us with a minimum floor value at 5 volts
for the project. However, the large array of motors we will utilize means that
considerations must be made for power tolerances - the combined power demand of the
motors we will be utilizing means that it is a real possibility for our current to become out
of control and destroy components. Running 30 servos which are rated at an input
current of approx. 270mA max running input current means that, at most, we will see
8.1 Amperes of current if every servo in the system at once is turning. The input current
of the microprocessor is 0.5A, leaving us with a total max running current of 8.6
Amperes (The current that the power supply will experience). At these currents, a fuse
might be worth looking into to preserve our components (or ourselves) in the event of
fault conditions.

Ultimately, we will likely set our supply voltage to be somewhere above 5 volts before
we step down our voltage using DC-DC converters. We will supplement our power
supply with supporting components such as switches to safely cut power to the project.

40

Beyond this, various technologies that might prove themselves to be useful for power
management will be discussed in the following sections, while specific examples for
power supplies will be discussed here.

3.3.7.1.1. TalentCell Rechargeable 12V 6000mAh

Battery Packs refer to batteries that are often used to charge mobile devices.
Specifically, the battery pack mentioned here features a 12 volt output with 6000mAh,
which should yield ~42 minutes worth of use at max current draw. Realistically this
current draw will be much lower (say, 25%), so we can estimate it to be around 3 hours
worth of operation.

The issue arises with the observation that this, and all other mobile device battery packs
that we could find, only output around 2A - 3A of current. Placing them in parallel would
alleviate this but buying 3 of this brand would start to weigh heavily on our budget. This
will not work for our project with the current demands of our motors and the scope of our
budget, so we will have to take our search elsewhere.

3.3.7.1.2. Amazon Basics 9 Volt Everyday Alkaline Batteries

9 Volt batteries see use for applications that require high voltage and power, which
accurately describes the power demands of our project. However, the cost-to-capacity
ratio of these batteries are worth mentioning; alkaline 9 volts typically have a capacity of
550mAh, and assuming our average current draw to be approx. 25% of our max we
have a demand of 2.15A. This yields 15 minutes of powering our device, which is
extremely low - not to mention the excessive current could damage the batteries. Both
of these problems could be solved by placing the batteries in parallel - although the max
current characteristics of this battery were not able to be found, 8 9V batteries in parallel
should be enough to maintain our average current demand for a reasonable amount of
time.

3.3.7.1.3. Lead Acid - 12V 8A ExpertPower

The 12V 8A Emergency Light Battery from Mighty Max Batteries boasts an impressive
12V output voltage and 8A output current. This falls within our reasonably expected
tolerances for current - while it would be nice to break 8.6A and be 100% certain, we
can safely assume that the current will be well below this value. Of note is the 8Ah
capacity, which falls within our expectations for power supply longevity in a single
convenient package. This would yield us a little less than an hour’s worth of operation at
max current draw, and if we were to approximate the average current at 25% of the max
as we have done for the 9 Volts this would yield around 4 hours of operation for the
device. The price is also affordable, being $29.05 when purchased from Amazon. - The
profile is small, being a rectangular design that is 3.94x5.94in with a depth of 2.56in.
Ultimately, this is the most promising power supply that we will be considering.

41

3.3.7.2. Linear Voltage Regulator

Linear Voltage Regulators fall under one of the two major DC-DC converter components
that we will be considering for powering our project. The following is a selection of
Linear Voltage Regulators, with careful in-depth analysis of each component’s pros and
cons and whether or not they will be suitable for our purposes.

3.3.7.2.1. LP2985

The LP2985 is a linear voltage regulator made by TI that is characterized explicitly by its
low-dropout voltage. It comes in 8 fixed output voltages - the ones we will be interested
in are the 3.3V, 5V and 10V options. The low dropout characteristics (typically
0.27-0.28V at its max current of 150mA) means that we would be able to comfortably
limit the output of our power supply to 10.5V minimum, with the extra ~.2V as additional
tolerance. In addition, the pricing is remarkably affordable - From TI, the LP2985 is
available by the reel in quantities of 1 to 99 for $0.359.

A discrepancy exists in our power output, however - The device is recommended to be
run such that it outputs a 150mA continuous load current, and cursory research into the
most popular servo on the market (SG90) indicates an approximate running input
current of 270mA. Thus, this device will most likely fail to power even one motor before
failure. This could be circumvented if we use multiple regulators for each component or
implement current amplifier circuits - both of these implementations would be
impractical due to space, cost and time restraints, so it would be best to take our search
elsewhere.

3.3.7.2.2. LP5912-EP

The above linear regulator’s current output is too low to support even a single motor’s
functioning at the desired voltage. The selection of the LP5912-EP is intended to solve
this issue - As described in its datasheet from TI, the LP5912-EP exhibits similar
characteristics to the LP2989, namely a low-dropout voltage - However, the major
difference between the two is that the LP5912-EP is designed to supply up to 500mA of
output current. The datasheet is gone into more detail in the next section.

From the perspective of voltage, it is specified that the model comes with fixed outputs
from 0.8V to 5.5V in 0.025V steps. While the versatility is a benefit for our purposes,
and it falls within our desired range for voltage outputs, custom ordering the part might
lead to a significant lead time from purchase to arrival. This can be mitigated by
punctual timing in ordering the part, but still is important to consider.

In addition to the aforementioned properties, we can pull from the data sheet that the
part is built with a low quiescent current in mind. This would assist us in maintaining the
primary objective of sustainability through power efficiency - Overall, the part seems to
be more attractive than the LP2985. However, because cost is a major consideration for

42

our project, other options will still be explored in order to maximize cost-effectiveness
and minimize financial impact.

3.3.7.2.3. Custom Linear Regulator

Linear Voltage Regulators are a subject of study for Electrical Engineering students as
part of Electronics 2, and thus it is within our capabilities to design our own Voltage
Regulators. There are some benefits and drawbacks to going down this road, which will
be discussed below.

The biggest benefit of realizing our own design for a regulator is the flexibility. We would
have the most control over the input and output characteristics of the component and
thus it could be built to fit into our project seamlessly. Below is a diagram realizing a
linear voltage regulator design derived from our work in Electronics 2. Using this
schematic, we could design the regulator such that it outputs all the current required to
power each SG90 servo motor in parallel at max current draw by including our own
parts rated at such currents.

Figure 20: Custom Linear Regulator

In this configuration, the target voltage above which our input becomes clamped is
. For our project, we would require parts that can𝑉

𝑜𝑢𝑡
= 1. 485 * (𝑅1 + 𝑅2)/(𝑅2)

43

sustain high currents - namely, the Amplifier would have to be rated for approximately
. This is a massive current to run through a system, which would270𝑚𝐴 * 30 = 8. 1𝐴

require wires with low enough resistivity to handle the total current before being split off
to the servos in parallel. Ultimately however, these characteristics can be built for.

While the positives for designing our own circuit are apparent, the downsides are
equally significant - as breadboards will not be allowed on our project, we would have to
design a PCB to realize the circuit. In itself this is not a monumental task, although it
can be time consuming to draft up a design in EAGLE (or a similar PCB program) and
actualize it. This can be tackled either by having the design be built by a separate
company or building it ourselves using equipment from the Senior Design lab - the
discussion of how to go about including PCBs into the project warrants its own section,
and so it will not be discussed in detail here as most of the considerations here would
fall under that same umbrella. To summarize, PCBs represent a major time investment
and, since at least one is required as part of our constraints, we would be better off
limiting the number of PCBs in our design.

3.3.7.2.1. Diode protection

When using the linear voltage regulator we can ensure that our output voltage is what
we are looking for but we need to be careful with our linear regulator in order to not burn
out the regulator. Which would cause damages and need us to replace it, in one option
we can use diode protection by positioning a diode between the input and output we
can make sure that our linear regulator does not burn up when the voltage becomes to
much and begins to burn up the diode draws some of the voltage in order to protect the
regulator against any changes we make. There are different types of diodes we can use
in order to implement diode protection. The schottky diode is commonly used in diode
protection due to their fast forward action and low forward voltage drop. This is an
option we would use if we were going to use some sort of individual linear voltage
regulator for example if we used a LD1085V50, with this regulator it outputs 5 volts but
the same issue we run into is we do not have enough current as it can only push 3 A in
this situation we will need to create a current gain circuit. This is something that was
especially covered when we were in electronics 1. When designing the current gain we
will more than likely use a BJT as its characteristics are simpler to calculate. If we end
up using some sort of singular regulator component this is a good idea to protect it but if
we decide to go the route of creating a circuit regulator it would not be nearly as ideal to
use this and more than likely a waste of resources. The figure below is a demonstration
of implementing a schottky diode to protect a linear regulator.

44

Figure 21: Linear Regulator with Voltage Protection

3.3.7.2.2. Heat sink

When the voltage gets stuck up in the regulator it causes the efficiency to decrease and
the loss of efficiency is due to heat. This can become a problem as this is what is
happening when the regulator is burning up. Something we can do in order to solve this
problem is to attach a heat sink to the regulator that will allow the heat to transfer to
material that will absorb the heat that is generated in order to keep our regulator intact.

If we were to use a linear voltage regulator with a heat sink this will allow us to use a
higher voltage that would be provided from our power source. If we use a bigger power
source the voltage would still come out as 5 V depending on the linear regulator we use
but with a large power source we can get the large amount of current that we need. But
with that we will experience more heat in the voltage regulator which will lead us to
putting in our heat sink to absorb some of that heat. Some common materials we would
use to bind the heatsink to the regulator would be silicon or materials which share
similar properties to it. The heat sink is something that can come into play by looking at
the diode protection circuit example. In that we are losing efficiency somewhere and it is
most likely due to heat so in order to protect our regulator from burning up we can put a
heat sink attached to it on top of the diode protection and moving forward we will have
no issue with damaging parts. The following figure demonstrates a common design for
heat sinks for use with integrated circuit components.

45

Figure 22: Heat Sink Attached to a Regulator

3.3.8.3. Switching Regulator

Switching Regulators are the other DC-DC converters we will be looking at for
implementation into our project. It is generally understood that they see much more
utilization in the tech world in comparison to linear regulators with regards to power
supply management, and so we will be conducting more thorough research into the
types of devices that are out there - As well, we will more extensively weigh the benefits
between the purchasing of parts and the creation of our own.

As a foreword, because switching regulators are generally more efficient than linear
regulators by virtue of the mechanism they use to clamp a given voltage we can
assume that the following parts will be superior to linear regulators in terms of fostering
longevity and duration of the power supply. Despite this, specific characteristics will be
discussed so we can paint a complete picture of the technology that exists and how it
can be used to benefit our project.

3.3.8.3.1. TPS62992-Q1

The TPS62992-Q1 is a newer model of Switching Regulator from TI. It is described by
their datasheet as a “Highly efficient, small, and flexible step-down DC-DC converter
that is easy to use.” Ease of use and implementation will be important for our project, as
the limited time and cost scope means that utilizing components which take less time to
accommodate is preferable. Step-down (or, “buck”) converters will likely be preferable
for our motor assembly, as the 8.1A current draw is a considerable hurdle that can be
solved by converting excess voltage to current.

The output voltage is defined as being from 0.4V to 5.5V, the range of which contains
both desired values of 3.3V and 5.0V for the microcontroller and motor assemblies
respectively. The issue arises when looking at output current; the device is rated for a
maximum adjustable output current of 2A, which falls well below the demands for our

46

motor assembly. Thus, should we implement this part, we will likely utilize it for our
microcontroller which has significantly relaxed current demands.

The device features above-average safety characteristics, with overcurrent and
over-temperature protection. This further cements the part as a good candidate for our
microcontroller, as any failures that could damage the microcontroller would be
catastrophic for our project and lead to significant time and cost penalties.

3.3.8.3.2. TPS568231

The TPS568231 is, as described by TI, a “Synchronous Buck Converter with D-CAP3
Control”. At first blush, this title offers up a few insights into the characteristics of the
device; to start, some research into the topic indicates that synchronous converters are
much more efficient than their asynchronous counterparts, so we can expect a
considerable efficiency rating for power being transferred from the supply to the
components. Next we see that the device utilizes D-CAP3, which is the most recent
implementation of a series of TI circuits for pulse width modulation. This offers the
cleanest transient performance characteristics which, for a switching regulator,
translates to a cleaner operation of the switching component and ultimately less noise
produced. As we have stated earlier, noise is not a major consideration for power
characteristics. Nevertheless, less noise is never a bad thing and so we can make note
of it during our part selection. In addition to the characteristics described above, we see
from the datasheet that no external compensation is required, which will help
considerably during the integration of the device into our project as less components will
be required for our PCB.

The most important feature of the datasheet is the inclusion of an “Application and
Implementation” section. In this section, it outlines a generic PCB implementation of a
regulator using the part along with specific part selections. The notable features of this
implementation will be discussed.

Most important of our considerations is the output Voltage and Current. The output
voltage of the device is controlled directly by the ratio between the Upper and Lower
Feedback resistors in the provided application schematic (Appendix D); the output
voltage is calculated as , similar to a non inverting amplifier0. 6 * (1 + (𝑅

𝑈𝑝𝑝𝑒𝑟
/𝑅

𝐿𝑜𝑤𝑒𝑟
)

with an input voltage of 0.6V. For our purposes, and approximating the given values for
the datasheet’s recommended component values, our and will be 82.5kΩ𝑅

𝑈𝑝𝑝𝑒𝑟
𝑅

𝐿𝑜𝑤𝑒𝑟
10kΩ respectively. It can be observed in the performance specifications that the output
current of the regulator typically lies at 8 Amps; this is considerable for our project, as
the current draw of our motor assemblies in parallel call for a max of 8.1A during full
operation of each motor - It is unrealistic to expect that our current will ever be
maintained at this value as the motors will not be running continuously throughout their
operation, and so 8A is acceptable.

The device features some additional characteristics that can be used to tailor the
performance to our project; the MODE pin on the device can be adjusted by a voltage

47

divider ratio which in turn governs Light Load Operation, Current Limit and PWM
Frequency. Light Load Operation is defined by the device and effectively allows us to
choose between more efficiency or less output ripple - for our purposes, we will likely
choose the efficiency option.

In summary, this component seems like the best option for providing power from the
supply to the motors. It is able to handle the sizeable current demands while also
maintaining good voltage characteristics to maintain the motors well above the
demands they likely will be operating at.

3.3.8.3.3. Custom Switching Regulator

As with the linear regulator, it is worth looking into the topic of creating a custom
Switching Regulator that we could custom-tailor to the design parameters of our project.
In order to accomplish this, we would have to design our own Pulse Width Modulator
circuit which we would have to do using an Op-Amp on top of utilizing an AC-Source to
create the modulated signal. In order to ensure the device operates without fault, we
have to make sure that the Diode, MOSFET and Inductor are rated to maintain up to
and including 8A of current. These assorted components can be found on websites
such as Digikey or Mouser and so shouldn’t pose a big issue.

The biggest issue we would face however is the utilization of a sawtooth or triangular
AC signal. To do this would require separate equipment that would quickly evolve
beyond the scope of the project. It would be preferable to look at specific parts rather
than designing our own switching regulator circuit.

3.3.8.3.4. Boost Converter

Boost converters are way in order to get our voltage higher if it needs to be, it operates
by switching between two modes of an open and closed switch and with an inductor that
stores the energy resulting in the load output being a higher voltage than what was
imputed. This would be good however this would require a control wire that opens and
closes the switch, this could be doable but one of the issues is space on our board
since we have 31 pins designated to the servos space. Which could get our board
getting even messier than it already is. One reason we would like to use a boost
converter is because we can use a small power supply and boost the voltage that's
going to the circuit. The only thing is the amount of current that comes out of the smaller
power supply leads to us needing a current gain circuit which we could implement using
a BJT or a MOSFET. The following figure is a demonstration of a common Boost
Converter setup which implements a switch.

48

Figure 23: Boost Converter

3.3.8.3.5. Buck Converter

A buck converter would be good if we had too much voltage and didn't want to damage
the servos or the boards at all. We can drop the voltage by switching a transistor open
and closed and having the loan on an inductor. This could be an option if the power
supply we get ends up being too much voltage. Like the boost converter this requires a
control signal and has the same issue of space on the board being limited. A use we
could have is if we need to have a larger power supply that can produce a lot of current
that we need for our project. This is an ideal way for us to not only have a lot of current
and at the same time limit the amount of voltage that we can use. An issue we could
have with this is that the power supply we would use in order to draw a lot of current
would be large and could take up a lot of space which ideally we would like to limit.
Below is a common buck converter configuration realized using passive components
and a high frequency switch, generally controlled by a PWM signal.

49

Figure 24: Buck Converter

3.3.8.4 DC Power supply

DC power is more than likely the simplest and easiest option in order to power our
electronics. This is due to most microcontrollers using DC inputs in order to power them
- the easiest way to apply DC input is to use batteries which will give us around 12 V.
Depending on the application we may need to drop or increase the voltage using a DC
to DC converter or Op amp. This is the easiest option to use as well as affordable.

There are a variety of size and rating options available for batteries. The most common
ones we see are AA and AAAs, which generally output 1.5V depending on the
manufacturer. These voltages are insufficient by themselves - one option is to place the
batteries in series so as to yield a higher total voltage by way of superposition, however
there is the potential that we could run too much current through the batteries and
damage them.

While it might not be preferable to connect individual batteries in series ourselves, there
are battery packs that exist which are made with readily-available current thresholds.
Most higher capacity and/or voltage batteries (such as lantern or car batteries) are
excessively heavy which would go against one of the primary goals of being lightweight
and portable. Thus the option of a medium voltage battery pack (i.e, 6V) would strike a
balance between battery weight, duration and voltage output that would be favorable for
our specifications.

50

3.3.8.5 AC Power supply

AC power is a commonly used power source and is most notable for being the voltage
that comes out of the wall. However AC power does have a lot of negatives in respect to
our project. The biggest issue is that in order to make it portable we need some sort of
small power source like batteries which are a perfect option since they are DC in order
to get some sort of AC battery or power source small like that which causes an
unnecessary cost increase to our project. We could get AC power from an outlet
however at that point our project no longer becomes portable. Another issue is that
most of the microcontrollers work on DC inputs so in order to get DC power from an AC
power supply we would need to use some sort of rectifier circuits that add unnecessary
complications to the circuit design. For these reasons we will more than likely be using a
DC power supply.

3.3.8.6 Op-Amp as a Regulator

Op Amps are a piece used in standard electronics especially in regulator circuits which
act similarly to DC to DC converter. They have simple circuits in order to either limit or
boost the voltage applied, however while it is a good electrical component using
something more efficient is more preferable like a switching regulator. Also there are
some small discrepancies on op amps like leaking current and offset voltage which can
cause some areas of issue for us when powering the device.

3.3.9. Signals Technologies

Signals, for the purposes of this section, refers to those technologies relating to the use
of current and voltage to relay information rather than strictly as a power supply. Not
only do circuit configurations exist for the purposes of power management, but there are
also documented integrated circuits with the express purpose of helping to amplify, filter
and generally help take advantage of control signals.

3.3.9.1 BJT/MOSFET Amplifier Circuits

BJT and MOSFET amplifier circuits are a common staple for the implementation and
functionality of devices that use analog signals. While not having much of a place for
supplying power to the design, they can help immensely for amplifier control signals
such as the PWM that we will be using to control our servos.

The option to include Transistor Amplifiers hinges on a couple factors. Transistor
amplifiers could be utilized for satisfying both the power demands of the system as well
as enhancing the signals that will be used to control our mechanical components. This
section will go over applications of a transistor amplifier within the scope of this project,
kind of parts that we could find useful for amplifying control signals, what makes them
useful for this application, and ultimately whether or not the inclusion of amplifier circuits
would be practical or necessary for the project.

51

The most useful form of transistor amplifier we could employ for our project is the
Common Collector BJT Amplifier - Generally speaking, BJT amplifiers are employed for
signal applications, such as audio interfaces. However, the circuit could work with DC
signals as well, and the implementation of this amplifier circuit would allow us to relax
our current demands for components governing the power supply of the project as
Common Collector amplifiers are often employed for current amplification. In effect, this
would allow us to expand our part selection for our voltage regulation circuits, as well as
allow us to save on cost by using cheaper parts to circumvent the high current issue; A
voltage regulator IC component is already much more expensive than a single
transistor, and the cost of a voltage regulator with high power tolerances compounds
upon this.

One downside we would have to consider, however, is the inclusion of a supply voltage
for our amplifier. This would introduce a level of extra complexity into the design -
nothing in our objectives or specifications requires that the power supply be a single
unit, however it would still be convenient to lessen the amount of independent
components in the system. Assuming the implementation of this circuit, the following
section goes over a number of transistor models that would be suitable for this
application.

3.3.9.1.1. MJD44H11AJ

The MJD44H11A family of transistors is a surface mount BJT transistor that is built for
high power demands. It is marketed as having a “High power dissipation capability”, and
“High energy efficiency due to less heat generation.” The biggest reason for this part’s
inclusion for our research is its high collector current tolerance - the MJD44H11A is
rated for a maximum collector current of 8A. The voltage tolerances as well are way
beyond the values we will expect to put this transistor through, with a maximum lying at
80V. The part is available from Mouser, and would likely be easily found in parts libraries
for software such as Multisim or LTSpice. The pricing is also affordable, with a single
unit costing 60 cents, not including shipping costs. With the affordability of the part
alongside its capability, we can say with confidence that this will be the part we would
go for if including this technology. The question of including the circuit at all is mostly an
analysis of cost to complexity - if we were to include this component then it would have
to be to run less current through a linear voltage regulator - our selection of linear
voltage regulators (and, generally, all linear voltage regulators) has a much lower
tolerance for current than our switching regulators while being much cheaper. Overall,
should cost become a concern, we will keep this option in mind.

3.3.9.2 Op-Amp Amplifier Circuits

Op-Amps are increasingly popular for use in amplifying signals. Because of their
effectively infinite input impedance they do not suffer from the loading effect as
BJT/MOSFET amplifiers do. They are also generally much more effective at amplifying
gain than BJTs, and while the use of op-amps can introduce a noise component this

52

noise can usually be calculated predictably. The biggest downside to including Op-Amp
Amplifiers in our project however would have to be its even higher demand for supply
voltage. Most amplifiers require both a positive and negative 15 Volt supply voltage;
while the inclusion of a supply might be manageable for a transistor amplifier,
implementing this would simply require too much accommodation to be worth using.
Thus, we will probably not be using this anywhere in our project.

3.3.10. 3D Printed Parts

3D printing is an extremely powerful tool that has come into mainstream appeal as of
recent years. In brief, it allows for the rapid and custom prototyping of parts for anything
from individual projects to large-scale corporate-backed efforts. Naturally, as 3D printing
is considerably popular with technical and hobbyist applications, it is a suitable addition
to our project. Rather than having to purchase miscellaneous hardware such as bracket
mounts, we can design these in a 3D modeling program and outsource it to be printed.
For our purposes this will likely either be the Senior Design lab that we have access to
as part of Senior Design 1, or simply printed ourselves using a 3D printer owned by one
of the group members. The endless design possibilities leaves a lot to consider for how
it should be applied to the project.

The strumming and fret assemblies will need to have 3D printed parts and it needs 3D
printed picks that can fit on to the servos and parts to press down on the frets. The
assemblies need to have the structural integrity so that it does not break while the servo
plucks the string, the pick on the servo needs to be able pluck the string without
breaking, and the parts on the fret motors needs to be able to hold the string down hard
enough for the pick on the strumming assembly to play the note it has to be able to do
this multiple times and quickly to play the song

The pick can be designed after a regular guitar pick but with a circular structure to
where you would hold it, to attach it to the servo This also needs to have a buffered
design on the guitar since the servo is larger than the gap between the strings. The
figure below demonstrates how these servos would be laid out for the strumming
assembly.

53

Figure 25: Servo Placement In Strumming Assembly

The assembly for the frets will not have this option since the and the motors for the frets
all need to be on the same line, the fret assembly will hold the motors above the frets
and be attached to another 3D printed part that will go on the back of the neck of the
guitar. In addition to having space for the motors it will also need a way for the wires
from each motor to go through it, there could be a gap between the neck of the guitar
and the assembly where the wires could go to the back part of the assembly and out the
back to the controller and power source.

One option for the fret assembly is to 3D print linear actuators to attach to the servos
which would allow for the servos to have linear motion to press down on the strings
although this is cheaper it is more complicated than using solenoids and the servos will
be much slower than a solenoid would be to press down on the frets however at the
frets the space between the strings is 6.35mm and the width of the servo is 12mm for
this reason to have this work properly we would need to stagger the servos vertically for
the fret assembly as well and some of the 3D printed stoppers on the higher part of the
assembly would need to be longer than the ones at the lower part, since the SG90

54

servo that we are using is 32mm wide then the stopper needs to be that length plus the
length of the lower stopper for it to be able to press down on the string at the same time
as the lower one. The distance between the frets is 38.1mm and the distance across the
servo is 32mm so this will not be a problem going down the neck only across. Shown in
the figure is the general layout of the assembly looking down the neck.

Figure 26: Servo Placement in Fretting Assembly

In the case that we do not use the linear actuator for the servos we can also set up the
servos so that they rotate onto the strings on the neck this will simplify the design of the
assembly as we are not mechanical engineers and the design for the linear actuator
may not turn out the way we intend for it to, due to being too weak of a structure to
support it or it just turns out to be too complicated to extend the length of the actuator to
implement the staggered design vertically. This design can be implemented similarly to
the design over the soundhole.

We are also considering a 3D printed housing for the microprocessor and PCB just for
the purposes of presentation.

If issues arise with creating a 3D printed assembly there is also the possibility of making
a Lego assembly as well, the assembly would need to be built to hold the servos
securely in place while they strum the strings, the picks will still be 3D printed since that
does not require as much design, and the assembly would need to be attached to the
guitar in the same way it would be in the 3D printed design since using glue would
mean that the assembly would not be able to be removed for maintenance of the

55

strings. It would also be easier to fix minor issues with the assembly design than using
the 3D printed design since the pieces can be removed and reassembled instead of
needing to go back to the 3D printer and reprinting after the design is corrected, so this
solution is much better from a trial and error perspective. Ultimately the flexibility of the
3D printed solution is what we want to focus on for the autonomous guitar, but if
something goes wrong or for a prototype design it is worth considering the potential of
the Lego assembly.

3.3.10.1. CAD Software

To model and print the 3D-printed parts for the project, we will need to use a 3D
modeling software. This software should be able to export the design in STL format,
which is the common format used for 3D printing.

3.3.10.1.1. SOLIDWORKS

SOLIDWORKS is the typical 3D modeling software used at UCF. It is installed on most
of the computers in the engineering building, so we would have easy access to this
software. It is also possible to get a student license, which would allow us to design the
parts in this software from home. Additionally, since we are new to 3D modeling and 3D
printing, it would be helpful to have assistance from someone who is familiar with the
software. The technicians in the TI lab, where we would do the 3D printing, are familiar
with the software and could give us some guidance in case we get stuck. The support
structure from the university makes this option likely to be the best.

3.3.10.1.2. Fusion 360

Fusion 360 is another common CAD software for 3D modeling. Like SOLIDWORKS, it
is possible to get a student license to install the software on a home computer.
Additionally, CAD models for design and 3D printing are standardized, so there should
not be any compatibility issues. In fact, Fusion 360 is compatible with SLDPRT and
SLDASM files, so it has great interoperability with SOLIDWORKS. There are fewer
people at the university that are familiar with the software, but, for example, the robotics
club uses it often, so they could be of some help. There aren’t any big advantages to
using this software over SOLIDWORKS, so we will probably not use this option.

3.3.10.1.3. FreeCAD

This is a free and open-source CAD software for 3D modeling. Because it is
open-source, it is not as cleanly implemented and so would be slightly more difficult to
learn and use. The main benefit of this software is that it is free, so if we have any
issues with getting the licenses for the other software, we can just install this one.
Again, it uses standardized file formats, so we could easily interop between this and one
of the other professional softwares to get the best of both worlds.

56

3.3.10.1.4. OpenSCAD

This is a very unique CAD software. Instead of interacting with it via a mouse and tool
ribbons, you write code that is executed to generate the design. This has a bit of a
learning curve, but for those who are experienced with programming, it allows a level of
fine control over the design that is not as easily achieved in other CAD software. This
tool will need further investigation before we can decide whether we should use it for
our project.

3.3.11. PCB Design

As our constraints outline, at least 1 PCB must be included as a part of this project. This
is strictly dictated by our Senior Design guidelines - the inflexibility of this rule means
that the research we’ll be performing to understand how we will include PCBs into our
project will be vital to the success of the project as a whole. However, even without the
consideration of this requirement PCBs are themselves an incredibly powerful tool for
the finalization of a circuit design which ensures its longevity and performance for years
to come - One way or another, we will be using PCBs for our project. This section will go
over in thorough detail the options we will face when traveling down the pipeline of
taking a circuit schematic and turning it into a chip.

PCB design is largely governed by the IPC 2221 Standard. The fine details of this
standard are discussed under the “PCB Standards” of our “Constraints and Standards”
section, and so under this section we will forgo discussion of how the chip itself will be
constructed and instead focus on our part of the production process for PCBs. we will
go over every step of the process that goes into the implementation of PCBs, the types
of challenges we face along the way, and the myriad of options we will ponder as we
plan the finalization of our circuit design.

For our project we have some different routes we can go since we have two different
areas that we need to address. For our motor assembly we need a lot more current in
order to supply enough current to the different servo motors. Our other component is
essentially the microcontroller which doesn't need to require nearly as much current as
the servo motors need. To address this we have two options, we can design one PCB
that has two switching regulators in parallel with each other since everything needs 5
volts but need different current amounts so in order to ensure that we don’t burn up the
microcontroller we will need to have them attached to two different regulators that work
specifically for what we want them to do.

Another route we can go is we can create two different PCBs one would only handle the
microcontroller and the other one would deal with supplying the adequate current to the
servo motors and the other would contain a switching regulator which would be able to
power the microcontroller and the shift registers. In doing this we will be able to make
sure that we do not fry the microcontroller by providing it with too much current.

Pros of using the single PCB include

57

● One single device with all components included
● Less space we would account for on the guitar
● Cheaper to produce one PCB than two separate PCBs
● Only one PCB to troubleshoot if it isn’t working

Cons include
● More complex circuit design
● Chances of things becoming fried
● Have to order completely new one if issue with one part of the design

Pros of using two PCBs include
● We can make sure to not fry the Microcontroller
● Easier to design individual circuits
● Smaller boards will be needed
● Don’t need to change both for issues with one

Cons include
● Having to design two PCBs
● Cost would increase

3.3.11.1 Circuit Simulation Software

Our first step towards the implementation of PCBs in our project is the simulation of the
circuits that they realize in order to ensure that they work as we expect them to. Note
that this section will not go over the procedures we will use to test the circuits, but rather
it serves as an investigation into the software that we can use to draft up schematic
designs. Our main choice will be between one of a few software programs. and they will
be discussed below.

3.3.11.1.1 LTSpice

LTSpice is a freeware Circuit Simulator, and is widely utilized; not only for hobbyist
applications, but for educational and industrial applications as well. It is commonly
touted as being very powerful, at the cost of less accessibility for newcomers. Utilization
of LTSpice in the past demonstrates that it has a vastly superior circuit assembly to
Multisim and that the simulator is superior in terms of calculation times - however, the
interface can be described as “clunky” with parts that cannot be dragged errors that
might not be faced during Multisim. LTSpice also has a vastly superior parts catalog, as
it is hooked directly to Analogue’s repository of parts.

3.3.11.1.2 PSpice

PSpice is said to have even more capabilities than LTSPice - for example, Monte Carlo
analysis which accounts for probability and random numbers. However, reports indicate
that it is an expensive piece of software - A custom quote is required for specific pricing
options. This can be circumvented by instead downloading Pspice-For-TI, which is a

58

form of Pspice with exclusive integration with TI’s part library - In exchange for this
inflexibility, the software is provided for free. The downsides to this option are negligible,
as all of the options for our linear and switching regulator options are from TI. Thus,
PSpice for TI proves itself to be a preferable option for designing these two PCBs.

3.3.11.1.2 Multisim

Multisim is the circuit simulation software that we are most familiar with, due to its
recommendation for most of our lab simulations throughout our undergraduate program.
Multisim’s strongest selling point, beyond the fact that it is completely free to download
and utilize, is its GUI. It utilizes the same SPICE algorithms as LTSpice and PSpice, but
has the added advantage of a much more accessible interface. Options such as being
able to drag parts directly and attach probes as objects prove to be considerably useful,
especially when having to go without by transitioning to another circuit simulator. The
downside to this option is that it has a more restricted parts library than LTSpice, and
less capabilities for circuit analysis than the other two options explored under this
section. However, for the purposes of our assignment, Multisim would likely be
extremely useful as the components that Multisim includes tend to be good enough for
hobbyist applications. It also has the added benefit of being web-based, which means
that files can be saved on the web server and accessed elsewhere as opposed to
having to be downloaded onto a storage device and transported manually. Ultimately, it
is likely that we will be utilizing Multisim for our schematic design.

3.3.11.2 PCB CAD Software

Before the PCB (or PCBs) can even be included in our design, we must first design how
the circuit that they model will be implemented on the board. The actual construction of
the circuits is a straightforward implementation of principles learned in Electrical
Engineering, and has no place in this section. Rather, we have to consider what
software we will use to generate the files needed for the PCB. Key considerations
include the versatility of the software as well as how mainstream the software is - It is
sensible to assume that the file types supported by well known CAD software will be
more widely supported by companies specializing in PCB construction.

3.3.11.2.1 Autodesk EAGLE

Autodesk EAGLE is the most obvious choice for us just as a starting point, as it is
included in every ECE senior design student’s curriculum as it is included as a part of
Junior Design. The most evident advantage to choosing Autodesk EAGLE is that we are
guaranteed to have at least a baseline understanding of how to use EAGLE. This will
provide a considerable advantage for our implementation stage as we will spend less
time learning the software, thus leaving more wiggle room for designing the PCB,
having it constructed and everything else that will go into the final implementation.
Another upside is that the software is completely free to download and utilize, as most
ECE students have already done. Further research indicates an above-average online
support as well as a library for parts that proves to be rather extensive. Going forward,

59

we will treat this option as the baseline and, if no better options are found, we will settle
on Autodesk EAGLE.

3.3.11.2.2 Fusion 360

Fusion360 is another PCB CAD software that we have encountered, albeit more
tangentially, in Junior Design. It was discussed more as an alternative to Autodesk for
those individuals more familiar. However, cursory research into the program &
comparisons to EAGLE seem to indicate that it has a number of issues and is generally
considered inferior to EAGLE. Its advantage lies in its integration with the other
mechanical engineering tools that are available on Fusion360, as the software was
designed more with mechanical CAD in mind. However, for the purposes of this project,
it would be best to look at other software solutions.

3.3.11.2.3 KiCad EDA

Research into KiCad indicates that it is similar to Autodesk Eagle. Like Eagle, KiCad is
completely free and seems to be geared towards beginner-to-intermediate applications.
The difference is that, while Autodesk Eagle is maintained by Autodesk, KiCad EDA is a
crowd-funded open-source program maintained by volunteers and paid contributors.
The general consensus seems to be that KiCad tends to be slightly less accessible than
Autodesk EAGLE, but provides many features that prove themselves to be superior.
KiCad is similar to Autodesk EAGLE in a number of ways - KiCad maintains an online
network of parts, similar to EAGLE, as well as an Auto-route functionality that can
significantly cut down on development time. Additionally, while both KiCad and Eagle
export PCB designs as .brd files and any company that takes EAGLE files will also take
files designed by KiCad, KiCad has the additional built-in functionality of exporting PCB
files as Gerber Files. This allows extra flexibility, as some PCB manufacturers -
especially hobbyist-centric ones - take Gerber Files more readily than .pcb files.
Because of these similarities, we could leverage the experience we have with Eagle to
learn KiCad in a much shorter time than most other PCB CAD programs to yield
superior PCB designs and overall less headache with the PCB design process.

3.3.11.3. Part Production

Once we have the .brd file that realizes the various circuits we will need for our project,
we will have to use those files to create the PCB. For hobbyist applications, this is
typically accomplished by outsourcing the file to a manufacturing company. The
company will take the design alongside a quote and manufacture the PCB before
returning it to us. This is generally seen as the industry practice, and so there is no
question that this is the avenue we will pursue. The challenge we are faced with then is
which company to use for our PCB design. In this section, we will go over the find
details behind individual companies and weigh them against each other to decide
ultimately which company we will utilize.

60

3.3.11.3.1. Digikey

The first company we will be looking at is Digikey. The biggest upside to choosing
Digikey is our familiarity with the company; we have obtained parts from them in the
past during Junior Design, so we can trust that their service is adequate. A cursory look
shows that Digikey accepts PCB files in the form of Gerber files. Gerber files are
notable for our purposes in that they are able to be exported by most PCB CAD
programs - this gives us a great deal of wiggle room in picking CAD software. Reports
seem to indicate that Digikey is also cheaper than most other competitors for utilizing
their PCB building software. This is a considerable boon for us, as our budget is limited.
As this is the option that is most familiar to us, we will use this company as the baseline
in our selection.

3.3.11.3.2. PCBWay

PCBWay is a popular PCB manufacturer that is based out of China. An upside to
utilizing this company is that they have an instant quote generator which will save us the
headache of requesting a quote and waiting for the price to be returned. A downside to
this company is that, because they are located halfway around the world, shipping time
will be a considerable burden on our schedule. On top of this, we have to worry about
additional shipping costs which could further cut into our budget. Ultimately, compared
to Digikey, this option seems to offer us more convenience at the cost of time and
money - We will keep this option in consideration as we continue our search.

3.3.11.3.3. OSH Park

OSH Park is a company that markets itself as catering specifically to hobbyists. It does
this with lower than average prices for smaller boards, and all accounts indicate that the
boards are high quality. OSH Park also includes a partner company named OSH
Stencils; They offer solder stencils for those same boards, which will cut down vastly on
our assembly time by allowing us to utilize the reflow oven present in the senior design
lab. In this way, our smaller parts can be included in our design without the time spent
on a difficult soldering technique as well as cutting down on the possibility of injury. The
downside to this option is that reports on delivery time seem to be inconsistent, which
might put a hamper on our schedule. Overall, this service offers superior cost and
quality at the cost of less consistency in part arrival; we will keep this option in mind as
we go forward.

3.3.11.4 Assembly & Final Implementation

The last, and most hands-on component of the whole PCB implementation process, will
be assembling the parts onto the PCB. This step is included with the general
assumption that we will be soldering the parts ourselves, as opposed to having the parts
included automatically on the board by the manufacturer - while enticing, this option
severely limits our part selection as we would only be allowed to pick from the parts
offered by the manufacturer in question. An alternative to this would be to send the

61

parts to the manufacturer alongside the PCB design, but that would effectively double
the time it’d take to get our PCB on our project. Thus, we will do the part assembly
ourselves. Below outlines the concerns and considerations that we will have to keep in
mind when it comes time to put our PCBs on the project. Note that this section does not
cover our prototyping stage, but a consideration of parts that we will implement for our
final project design.

3.3.11.4.1 - Wiring to/from/between PCBs

Generally speaking, our selection for wires would be negligible within the grand scheme
of things. However, due to the high currents that are present in the project by way of the
servo assembly, we must consider how our power will be transferred and dissipated as
it is transported from the power supply and regulators to our components. Wires, from
the viewpoint of current tolerance, are categorized by gauge (American Wiring Gauge,
or AWG). A copper wire at an AWG gauge of 12 is rated for around 10A according to
some sources, but the consensus seems to be split when looking across multiple
websites. which should be sufficient assuming a worst-case scenario. This brand of wire
is available from a variety of locations, and so it can be safely assumed that we will be
able to procure it.

The solder used for attaching the wiring to PCBs is seen as negligible when viewed
from the lens of current management, and thus we will not have to place a great deal of
emphasis upon the solder selection for our higher current components.

3.3.12. LCD

One of The things that we want for the Autonomous Guitar is to have a LCD display on
the PCB that will tell the user first what the Bluetooth connection status is after a song is
uploaded to the MCU the LCD will display the name of the song. This can be done by
sending the name of the file as well to the microcontroller along with the MIDI file itself.
The LCD display will also show the amount of time has currently elapsed in the song.
When the user chooses a different song from the songs uploaded on the autonomous
guitar the LCD will display the song that the guitar will play.

The LCD screen needs multiple pins to control it and it will also require a potentiometer
to control the voltage supplied to the screen to prevent noise from interfering with the
display. However testing with multiple resistors between 1 and 10 K ohms will also work.

The LCD screen will serve no technical function and could be a potential limiting factor
in the power consumption of the system but it is something that will be easy to add and
can be very helpful for usability and testing to make sure everything is working properly.
If we implement this with SPI with the motor controllers it is as simple as adding another
shift register and adding it to the daisy chain with the other shift registers for the motor
control. The other option is to implement it with I2C which will consume less power but
then we will have to use an extra module to implement that feature.

62

3.3.12.1 I2C LCD 16x2 Adapter

In the case that we cannot find a 16x2 LCD with I2C capabilities we can use a I2C LCD
adapter for connecting the LCD screen to the microcontroller. The adapter needs to
connect all the LCD pins to the corresponding pins on the adapter then have the
adapter connected to the data and clock pins on the microcontroller to get this to work.
This module will also need to be connected to the power line to work. It is also possible
that we could use a shift register instead of an I2C module and that would let us use the
LCD screen in SPI and connect it with the already existing SPI connection with the
Servo Control.

3.4. Possible Electronics Architectures
There are many ways we could structure this project. Each structure entails a different
block diagram, and has far-reaching effects on which components we will use and how
the end-user will interact with the device.

To get the output of the Algorithm to the controls for the motors there is the option to
either transmit the data from an external device through methods such as UART, or we
can run the Algorithm directly on the microprocessor. If we transmit the data from an
external device, it can transmit the output of the algorithm which could be represented
as a string to the microprocessor which then plays the note and repeats this until the
song ends or the user stops the song. This method would also require a front end for
the user to input their midi file and start and stop the song. There would need to be
some method to wirelessly transmit the UART from the microprocessor to the computer.
It could be transmitted over wifi or over bluetooth in this method. Most of our options for
microprocessors have this functionality or are capable of having this functionality with
an external module to provide wifi or bluetooth.

Figure 27: Personal Computer Architecture

The other option is to run the algorithm directly on the microprocessor, this would allow
for the project to be more self-contained Figure 8 shows how unlike in the previous
architecture there are no PC or external devices involved, microcontrollers already take
MIDI notes as individual pieces of data, our algorithm would just need to translate that
into notes that would be played on a guitar within the range of notes that our device is
accounting for. Using this method would require some way for the user to interface with
the guitar directly to control starting, stopping and selecting a song to play, which could

63

be done with a button to start a song, a button to stop a song, and an LCD display to
display the name and time left of a song. it would limit our options for potential boards
since some microcontrollers would not be able to run the algorithm or lack USB ports
which would be necessary to store the MIDI file in cases where the microprocessor
does not have onboard storage.

Figure 28: Single Board Computer Architecture

On the motor side of things, we need motor drivers for most motor types, which will take
the 30 control signals from the shift registers and use them to switch the power for the
motors.

Figure 29: Motor Driver Architecture

Alternatively, servos have drivers built-in, eliminating the need for separate driver
components.

64

Figure 30: Servo Architecture

The LCD display will also need to be included in the architecture, this can be connected
either by SPI with a shift register or by I2C with a I2C converter module, The benefit of
using the shift register is that it has lower power consumption and it will have a faster
refresh rate, but given that the servos are all going to be connected to a shift register
already this could make add some unneeded complexity to the design since we will be
using daisy chain configuration for the wires. Alternatively we can use I2C, this will be
slower and more power consuming than using the shift register and it will require buying
a module that will make the LCD screen compatible with the I2C protocol or an LCD
screen that already has I2C protocol built into it.

3.5. Possible Hardware Architectures

3.5.1 Hardware Option 1

One thing that must be considered is the amount of motors that we plan on using. When
using as many motors as we have initially thought of it will likely cause some careful
planning to be done. To ensure that our motors are functional and operate
independently we will likely need a microprocessor with enough pins to program them
individually. This is something that must be looked at when selecting the correct
microprocessor. In this scenario we would have the microprocessor program each
motor individually. This solution has both pros and cons. Some pros include the
repeatability of the code ideally, as if we can get the code working for one motor it is
fairly similar between each motor with ideally some small tweaks. Some issues that
arise from this solution is the pin outputs each microprocessor will need to have 29
different output pins or we may have to get multiple microprocessors that would
increase the cost of our overall project. Another issue that will arise is space on the
guitar for the individual motors as it may get potentially crowded along the neck of the
guitar

3.5.2 Hardware Option 2

Another solution to our strumming problem is to create an xy plane that uses motors to
control the position. In this scenario it would require us to have less motors in order to
strum however these solutions bring up more problems. One major issue is it would only
be able to only play one fret at a time which would severely limit the note range we
would be able to play. It would require a lot more mechanical design in order to ensure
that the xy system is calibrated correctly and some mechanical design we just don't
have enough experience to create reliably. Also this solution will be much larger than we
are aiming to achieve, as it would require a sort of mounting system in order to make
sure it does not interfere with the frets. This idea is not ideal for us due to the amount of
mechanical and structural design this option would require.

65

3.5.3 Hardware Option 3

Potentially an option would be to have different linear tracks which would run long ways
along the neck of the guitar. This combines a little bit of both options above. This would
be able to play more of a note range than option 2 but if we would try to match the note
range in option 1 we would essentially have to put enough motors that would make this
option useless. This would also cause the same mechanical issues as option 2 but
possibly more difficult as it requires more motors and more pins which would lead to
potentially more microcontrollers being involved in order to compensate for all the pins it
would need to have. This may be our worst option as it could cause more headaches to
pursue then worth.

3.5.4 Hardware Path Moving Forward

Through group discussion and feasibility as of now the option to be selected will be
option 1 even though it could cause some increases in cost our group has decided to
accept the risk and continue researching how to bring option 1 to life. This will include
looking into the best programming language for the microcontroller as well as the
algorithm to use midi files. We will look into which is the best motor type to use in order
to press the frets down and strum accurately and quickly enough. With all these ideas in
mind we believe that this will be our best option to achieve our goal and ambitions for
this project. Below is a table which breaks down the thoughts that went into the decision
of going with option A. Although the cost values may vary depending on availability, to
our knowledge this is the best breakdown to suggest option A is our best option.

Option # of motors
needed

of
MCU

complexity Note range Mechanical
requirements

Cost

1 29 1-2 High High Low Med

2 1-7 1 Low Very Low Very High Med

3 ~12 1-2 Medium Medium High High

Table 7: Comparison Between Hardware Design Options

3.6. Plug in Power
A stretch goal of ours can be to plug in the guitar to a wall outlet and run on corded
power. Doing this we can ideally toggle between the Battery operated DC power and the
wall outlet which runs on AC power. This will be considered a stretch goal since it will
cause significant complication to our current design circuits.

The easiest way to implement this is to have a separate PCB and that will allow us to
have a totally separate circuit, this is something that will lead to a pretty big increase in

66

cost as well as time and resources. This would require us to essentially double our
electronic devices. This would include having a second microcontroller since we have
so many outputs we can not keep them on just one microcontroller unless we upgraded
to a bigger controller with more output pins. The biggest issue with this design option
that will make it difficult is we have two sets of wires which need to control one set of
servo motors. In this scenario we would need to figure out how to either splice the wires
or figure out some other type of to combine the control signal wires.

Another way we could go about and process this is to make one big PCB which will
have both the DC and AC power circuits. This will make the circuit quite large and also
very complicated. We will need to be careful of having voltage lines running next to
each other and would have to deal with the AC power interfering with existing traces
and components. This is why this is such a stretch goal since it would require a lot of
extra time and money all though it is feasible it is extremely difficult.

Using AC power would give us additional standards that we do not need to currently
worry about since we are not using AC power but using plugs it involves a lot more that
is standard practice since every outlet is regulated causing it to be uniform.

3.7. Guitar Mount Building Material
The following section details various methods we could use to approach the challenge
of prototyping our design. Specifically, we will be discussing strategies we could use to
mount the various components to our guitar, such as our motor assembly.

3.7.1. Lego Brick Mount

We have considered the option of using LEGO bricks to fully build out our guitar mount.
Going this route / taking this path offers us the following advantages:

● We can easily customize, change, and adapt our mount to different needs as we
see fit when actually setting up and prototyping the project, allowing us to
account for unexpected variables

● It allows us to be very flexible with the shape of the actual mount with little effort
and not much extra cost to us for building

While some disadvantages of using LEGO bricks would be

● Mount not being very sturdy

● Mount potentially breaking apart easily especially when being transported

Though, we also discussed using glue to ameliorate those disadvantages.

67

Figure 31: Example Lego Mount Construction

3.7.2. K’Nex Mount

Another option in consideration is using K’Nex pieces to build out the servo motor
mount for the guitar. Going this route / taking this path offers us the following
advantages:

● We can easily customize, change, and adapt our mount to different needs as we
see fit when actually setting up and prototyping the project, allowing us to
account for unexpected variables

● It allows us to be very flexible with the shape of the actual mount with little effort
and not much extra cost to us for building

While some disadvantages of using K’Nex bricks would be

● No easy way of holding Servo Motors

● Mount potentially breaking apart easily especially when being transported

68

Figure 32: Example K’Nex Mount Construction
https://www.reddit.com/r/KNEX/

3.7.3. Wooden Mount

Wood is a very strong material and can be easily cut and shaped using a laser cutter.
The TI lab at the university has one, along with technicians that are very experienced
with using it and making files for it. With their help, we would likely be able to design a
decent mount for the motors using this method. However, we would be limited by the flat
nature of the wood, making our final mount very boxy.

69

https://www.reddit.com/r/KNEX/

Figure 33: Example Laser-Cut Wooden Servo Motor Mount Construction
https://www.dm-toys.de/en/product-details/MU_N-A00108.html

Some advantages of using wood are:

● Very sturdy and robust material

● Supported by TI lab

● Cheap

Disadvantages include:

● Difficult to prototype, change, and adapt

● None of us have much woodworking experience or the necessary tools for
creating intricate or complex designs using it

We have discussed the possibility of prototyping using one of the above materials and
possibly making a stronger sturdier wooden frame to hold the larger parts in place. We
can also manufacture some of the simple parts out of wood, such as the actuation arms,
and then leave the more complicated parts to another method.

3.7.4. 3D Printed Mounts

70

https://www.dm-toys.de/en/product-details/MU_N-A00108.html

Figure 34: 3D Printed Mount Construction
https://grabcad.com/library/r130-3-6v-dc-hobby-motor-holder-mount-1

Some advantages of using 3D printed parts are:

● Extremely customizable to exact dimensions

Disadvantages include:

● Time-consuming to prototype, change, and adapt

● None of us have a 3D printer or much AutoCAD experience so we’d be very
reliant on the Maker lab in the Engineering building

We have discussed the possibility of prototyping using one of the more easily adaptable
materials and possibly using 3D printed plastic for the smaller custom parts needed
such as the linear actuators for fretting

3.7.5. VEX Robotics Mounts

71

https://grabcad.com/library/r130-3-6v-dc-hobby-motor-holder-mount-1

Figure 35: VEX Robotics Example Construction
https://www.vexrobotics.com/v5-competition-starter-kit.html

VEX Robotics gives us a good tradeoff between easy prototyping adaptability and
customizability, while maintaining structural integrity and sturdiness of material since it
mostly involves metal parts that can actually be bolted and screwed into each other.

While some disadvantages would be that determining the necessary parts we’d need
beforehand could be costly and time-consuming as well as take a while to ship.

4. Constraints & Standards
The section below outlines the Constraints and Standards that we will have to work
around. We need to consider constraints related to economic, environmental, social,
political, ethical, health and safety, manufacturability and sustainability. It is important to
consider these constraints because it will affect our design decisions.

72

https://www.vexrobotics.com/v5-competition-starter-kit.html

4.1. Constraints
For our constraints as seen in table 5, per course requirement for senior design we
need at least one PCB to turn in for the course. This will not be a problem because we
will need power and shift registers to make our project work.

4.1.1 Economic/Time Constraints

We have a budget of around $200. We are paying for this out of pocket since we do not
have a sponsor and we would prefer to keep the price to a minimum. This is flexible but
$300 is the maximum, this will factor into the design and is the reason that we have
decided to use servos on the fretting assembly instead of solenoids and using an
acoustic guitar instead of an electric one which would put us at a very high price point.
The most important standard is that the project must be operational by the end of april
2023. This also factors into our design and what parts we purchase, we can’t purchase
items on back order since that may take too long to arrive and we need to decide on
parts quickly to make sure that the parts work, because if we buy parts that do not work
or are not what we need in January and it will be 2 weeks before the new parts arrive,
we will lose a significant amount of time to build the project. For this reason we will need
to decide on the parts and purchase them by the end of our first semester of senior
design.

4.1.2 Environmental Constraints

The Autonomous Guitar will not need any special considerations for the environment, it
has no interaction with any environmental concerns except things like battery disposal.
The project team will ensure that any batteries disposed of will be disposed of properly.
Since we will not be using a battery that is larger than 9 volts we can just recycle them.
We have not looked into any energy source such as solar power for our project since
that is outside the scope of what we want to accomplish given the time that we have.

4.1.3 Social Constraints

The Autonomous Guitar has no actual use in the real world, if someone wanted to play
a song but did not know how to play an instrument they could just use speakers. The
Autonomous Guitar only exists as a fun project and most examples of self-playing
guitars also seem to be hobbyist projects and not professional products. For these
reasons there are not any social constraints for the Autonomous Guitar.

4.1.4 Political Constraints

The Autonomous Guitar does not have any constraints related to politics. The only
potential problem is with DMCA during the final demonstration but this is not a design
constraint and only royalty free music will be used during the demonstration.

73

4.1.5 Ethical Constraints

The Autonomous Guitar will not use any copyrighted software and any open source
software used with this project or any figures used in this paper will be cited in the
appendix. No designs for the guitar will be taken directly from other self-playing guitar
projects, and care will be given to ensure that no patents to another product are
infringed upon.

The Autonomous Guitar will not contain any substance or material that could be harmful
to a human and any waste such as batteries or broken 3D printed parts will be recycled
properly.

4.1.6 Health and Safety Constraints

The Autonomous Guitar will need to be designed with safety of the user in mind, the
user must be able to use all the guitar’s features without any risk to their safety. The
assembly should be designed so that the user is not harmed if the strings break from
the servos. There is also risk of electrocution to the user if the power supply is set up
incorrectly in a way where the user can touch the electrical components. For this reason
the PCB and the rest of the electrical components should be covered. Safety
precautions also need to be taken for the design team when constructing the
Autonomous Guitar, it is possible that a faulty battery may explode or someone may be
shocked while debugging the system. To ensure that this does not happen, the team
members should always turn off power to the device and disconnect it from the testing
environment such as the computer. The design team should also make sure not to
touch the guitar while it is playing, the person may be injured by placing their fingers
between the strings while the guitar is playing and be injured by the guitar or the strings
could snap while being played leading to injury and the best way to prevent this is for
the team members to not touch the guitar during testing or demonstration.

4.1.7 Manufacturing Constraints

Due to supply issues affecting many electronics industries there are some things that
need to be taken into account for the choices of electronics for the Autonomous Guitar.
We needed to decide between using a single onboard computer and a microcontroller,
due to the single onboard computer being way more powerful than the system would
require and the price and availability of boards such as the Raspberry PI where we were
unable to find one for under $150 even though the list price according to their website is
$35 and all of the recommended retailers carrying the Raspberry PI were out of stock.
For these reasons a microcontroller was chosen instead which we were able to find for
$15.

Other parts required by the Autonomous Guitar do not seem to currently have any
supply issues. As long as we know what we need before we begin running low on time
we will be fine on acquiring the parts that we need.

74

Another manufacturing consideration to make is that the Autonomous guitar is going to
have several 3D printed parts, and no members of the project team personally own a
3D printer, for this reason most 3D printing will need to be done in the TI innovation lab
at University of Central Florida on the main campus.

4.1.8 Sustainability Constraints

The Autonomous Guitar is expected to be able to play a song on the guitar that is 3
minutes long, and it is expected to be able to do this reliably without breaking strings or
wearing out it’’s guitar picks, it is unreasonable to expect the guitar picks to last forever
especially 3D printed ones though so the guitar picks should last at least 1000 minutes
of active use we can implement this by designing thicker guitar picks that can still gently
pluck the string without breaking it if this is necessary, and there must be a way for the
user to replace these guitar picks when they are worn down or break. Due to the fact
that these guitar picks need to be 3D printed the user should have a 3D printable file
available to them so that a new one can be printed. The file will be downloadable from
the project's github repository.

The strings on guitars also wear down over time and the assembly will need to be
removed so that the strings on the guitar can be replaced and then put back on the
guitar. This process of removing the assembly and putting it back in place should be
designed to be doable with just a screwdriver and should be documented for the users
convenience further along in this paper.

Guitars also can get out of tune when not being played. Since the strings will not be
accessible to the user the Autonomous Guitar will need to have a “Tuning Mode” of use
where it will continuously pluck the string while the user turns the tuning dial until the
user is satisfied with the sound. This action will need to be started from the PC
connected to the Autonomous Guitar or it can be initiated from a button on the PCB,
since the Autonomous Guitar will already have functionality on the PC end it is better to
just include it there where the user can press a button to activate the tuning mode and
then press another button to tune the next string in line until all the strings are
sufficiently in tune.

The autonomous guitar is not meant for outdoor use, using it outside will be fine but the
autonomous guitar is not waterproof in the case of rain and acoustic guitars in general
are not waterproof since the wood can be warped and the strings can rust. The
recommended operational area from the design team is indoors in a dry area.

Constraints

At Least 1 PCB required

Under $200

75

Algorithm written in python

Microprocessor code written in python

Only use guitar surface area

At least 1 Regulator

Only use DC power

Use Eagle for PCB design

Each Motor Individually wired

Must be completed by the end of April 2023

Table 8: Constraints

4.2. Standards
When designing the Autonomous Guitar we need to keep the design within certain
standards to ensure that the device is properly designed by the most up to date
standards on the technologies, items and methods being used so that it adheres with
what will be expected with a finished product.

4.2.1. Design Standards

Standards Official Name

Audio Storage Standard Musical Instrument Digital Interface (MIDI)

UART Communication protocol rs-232

Bluetooth Standards Bluetooth SIG

WiFi Standards IEEE 802.11

C standards ISO9989

Python Standards PEP 8

Standard Guitar Tuning E A D G B E

Western Scale Tuning A4 = 440 Hz

76

PCB Standards IPC-2220

Soldering standards IPC J-STD-001

Table 9: Standards

The table above shows the standards that we will be using as well as the official name
of each standard.

4.2.1.1. MIDI Audio Storage Standard

MIDI does not have a standard defined by ISO or IEEE but it does have specifications
for the MIDI that govern how it works that are outlined by the MIDI Manufacturers
Association. For the purposes of the autonomous guitar MIDI 2.0 will be used which is
an extension to MIDI 1.0 as most of MIDI 1.0 still applies. The MIDI file is a binary file
with each chunk being 32 bits in length. There are two types of these chunks as they
can either be a header chunk or a track chunk, a track chunk can use up to 16 MIDI
channels.

Given that MIDI does have a way to separate channels it can be possible for the
autonomous guitar to be able to separate the guitar track from the rest of the file for it to
play but there is no standard piece of data that is specifically for a guitar note rather
than any other instrument other than the byte “04” indicating that the channel is of an
instrument.

MIDI files do not hold data for the actual sounds themselves inside the file. The file
needs to go through a MIDI synthesizer whether that be implemented by hardware or
software, without a synthesizer it is just a collection of bits. MIDI has a type of control
change method called attack, decay and release time, these all of a default value of 64
according to the MIDI documentation, what these due is it determines the amount of
time it takes for the note to reach its maximum volume then it will wait for the volume to
lower again then release the note. Since the autonomous guitar does not use a
synthesizer this will not be entirely necessary to keep in mind but it will let the guitar
know how long to hold a note for.

4.2.1.2. UART Communication Protocol Standard

UART uses the rs-232 standard which applies to serial communication methods, This
means will transmit a starting bit followed by 8-bits and then a parity bit before sending
the next packet since this standard has been around for a very long time any time you
code any UART functionality this is done for you in the library that is being used for
UART transmission so this is not something that we need to be particularly mindful of
since the libraries for the microcontroller will already have this done in the code library..
We will also be using standard baud rates which is 9600 baud, we will also be using
UART in full duplex mode so that the computer can transmit and receive at the same
time and the MCU can as well. We are doing this even though most functionality just

77

involves transmitting to the guitar because it can help us debug the algorithm, so we
can see if the MIDI data is being converted properly.

4.2.1.3. Bluetooth Standard

Bluetooth is Standardized by the Institute of Electrical and Electronics Engineers (IEEE)
under the standard IEEE 802.15 Low Rate Wireless Networks. This standard covers
both Bluetooth and Bluetooth Low Energy (BLE). Since bluetooth works on a PAN and
PANs are affected by this standard the Autonomous Guitar will use it. Transmission of
the MIDI file will not need a lot of power nor will it need to be fast since it will start
playing the song only after the file is completely on board the MCU, after that all the
Bluetooth is needed for is to tell the microcontroller to start playing the song or stop the
song.

IEEE 802.15 covers all low rate wireless networks, of which Bluetooth is included and
PANs are included as well. Bluetooth is also standardized by the Bluetooth Specification
V4.2 by Bluetooth SIG, which states that Bluetooth and BLE operate at 2.4 GHz and
uses Frequency-hopping spread spectrum (FHSS) to prevent interference in the
connection with the device. Bluetooth low energy uses Frequency division multiple
access and time division multiple access (TDMA). FDMA is used to separate the 40
physical access channels that BLE has and it uses a 2 MHz buffer to do this, 3 of these
channels are used for advertising and 37 of them are data channels. TDMA allows one
device to transmit to the other at a time and uses predetermined intervals to do this.
Having advertising channels is important for the Autonomous Guitar since the PC or the
phone will need to be able to find the microcontroller when trying to pair to the
Autonomous Guitar.

4.2.1.4. WIFI Standard

WIFI is standardized by IEEE under the standard 802.11 Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications. This technology can still fulfill
our needs that the standard 802.15 can fulfill but it may be more than we need to make
the Autonomous guitar work if during testing the bluetooth is too slow we may have to
switch over to WIFI and the 802.11 standard.

4.2.1.5. C Standards

If C is necessary for use in the autonomous guitar project we will need to follow some
standard, C does not have any official ISO or IEC standards that are free however the
2017 draft of ISO9899 also known as C17 will be used since it is available for free.

Stated in the ISO9899 Standard is that preprocessing directives such as lines of code
starting with #include should be at the top of the document before any functions are
placed. When the program on the microcontroller begins executing it will begin with a
function that is called main that is of type int, according to the ISO9899 standard the
program can take arguments but for the purpose of the autonomous guitar this will have

78

an argument of void. The main function should have a return value since it is of type int
of 1 but since this is meant to loop indefinitely while the device is turned on there will be
no return statement and there will be an infinite for loop.

As a general rule for writing in C for the Autonomous Guitar conventions that will be
used are that variable names will be written in camel case and functions, loops, and if
statements will have the curly brace be placed under the function call or statement
instead of next to the function call or statement. Break commands will not be used
outside of loops and switch statements in accordance with the ISO9899 standard.
Statements such as GOTO will not be used in any C code in the project as it will not be
necessary and adds unnecessary complexity to reading the C code for debugging and
maintaining the code.

The general format of the source file will be at the top of the file will be calls to the
header files that contain the libraries that will be used in the project starting with C
standard libraries along with comments beside them which detail what functions from
those libraries are needed. After the standard libraries the libraries that are for the
chosen microcontroller are next not that much explanation is needed for this one since
the microcontroller will not work without it. The next thing will be any structs that need to
be created for user created data types if necessary. The main function will be after this,
inside the main function the integer declarations will be made first then any initializations
will come after that such as starting the watchdog timer. The function calls and the loop
to wait for interrupts will come after that, however since we are writing code for
microcontrollers we can initiate a low power mode instead of the loop.

Once the main function is written the other functions will come after that a brief
commented out explanation will need to be above each function describing what it is for
and the final thing that should be in the source file is interrupt vectors which above that
should be a commented out brief explanation and what triggers the interrupt.

Another rule that can be considered is what to do with white space, in between types of
headers will be a single white space, and in between functions will be a white space and
one white space between the beginning of the function and the first line of code in the
function. There should also be a space between the variable initialization and the next
block of code, and there should be a single white space after an if statement or loop.

Detailed in ISO9899 there are several standard headers that can be used to implement
standard libraries of which some will be used along with headers that will need to be
included with the microcontroller library such as <time.h> and <math.h>.

4.2.1.6. Python Standards

For segments of the code that will be written in python such as the algorithm and the
user interface we will need to use a different standard than the C standards because the
syntax between the two languages and their uses are very different the active standard

79

that we have found for python was a style guide known as PEP 8 on the python
website.

According to the PEP 8 style guide when indenting code each level of indentation
should be 4 spaces and wrapped code should be indented to the beginning of the
parenthesis on the beginning line or it can be done with just the open parenthesis on the
first line and then the following lines to define that function have an extra 4 spaces. This
rule also applies to if statements and lists. According to this standard tabs should not be
used unless tabs are already used in the file. If a line of code exceeds 79 characters
then it should go to the next line in the method stated above and all following lines
should not exceed 72 characters.

When importing libraries if two or more libraries are included in a file the libraries should
be imported on separate lines for the purposes of readability, to go further imported
libraries should be imported in the order of standard import libraries, third party libraries,
and then local libraries and a blank space should be in between these groups. Not
included in the PEP 8 standard but for simplicity in the autonomous guitar code, unless
proven to be necessary, only full imports will be included in the code for readability
purposes.

Comments should be used when appropriate, when something in the code cannot be
intuitively understood then an inline comment should be made to give a brief sentence
on the purpose of the line of code, above a loop, a function call, or a if statement, a
block comment can be made to describe what is happening inside that block of code.

When it comes to naming conventions for variables and functions PEP 8 does have a
set of rules but some freedom in naming styles. For the purposes of the autonomous
guitar project any single letter variables will be lower case and all variable names that
are longer than a single letter are completely lowercase. Use of single letter variables
with lowercase l and uppercase I are prohibited by the PEP 8 standard as it can be
confusing to read this. Naming conventions for variables should be only a single word to
make typing them quickly easier; naming conventions for functions can be more than
one word to provide a better description of the function but must have every word of the
function start with a lowercase letter and have underscores in the place of spaces
instead of doing it in a camelcase style as this is the general standard for python code.
When naming constants the PEP 8 standard details that they should be named in all
uppercase and in the case that the constants name is more than one word it should
have an underscore instead of a space like a function name. Also every variable and
function must be made with an ASCII character to avoid any complications or
compatibility issues.

When writing exception handling it is important that the code inside the exception
handler is specific enough to not catch more than a single exception in each statement
so that it does not raise the flag for more than one possible error and the exception will
make the user aware of the error. When making an if statement inside of a function the
PEP 8 standard details that at the end of the possible decision if nothing changes from

80

the function the final else statement should have a return value of None instead of just a
return statement.

4.2.1.7. Guitar Tuning Standard

Standard tuning for the guitar will be used with notes on each string from top to bottom
as usual: E A D G B E. They will be tuned using modern music’s tuning standard of

A4 = 440 Hz

4.2.1.8. Electrical Component Standards

The integration of circuitry by way of component soldering and PCBs means that we will
have to conform to a number of standards outlined within the technical field. This
section will go over a multitude of standards that are relating to our project, of which our
design will conform to - Not only are these standards designed for the smooth
modularization and efficient production of parts, they are also written in order to insure
the safety of us and those individuals who might have possession of the project in the
future.

4.2.1.8.1. PCB Standards

The standards that govern the entirety of general PCB design are outlined within the
IPC-2220 Family. The IPC (or, Institute of Printed Circuits) Is a Standards Development
Organization (SDO) located in Bannockburn, Illinois that seeks the standardize the
design and production of electronic equipment and assemblies. It is recognized
world-wide, and thus whatever PCBs we order are likely to follow these standards
closely - while our PCB will likely be routed by a third party company, the onus is on us
to design our boards through whichever board capture software we utilize in such a way
as to conform to these standards.

The IPC-2221 standard specifically outlines the generic standards for a PCB design,
including specific parameters for component mounting and interconnections. For our
project, this standard is also supplemented by the IPC-2222 standard which specifically
refers to Rigid PCBs (as opposed to Flex, MCM-L or HDI boards). Below are some of
the hallmarks of the IPC-2221 standard which our PCBs will adhere to. Note that these
are the standards as outlined by Sierra Circuits PCB Manufacturing under their article
“Applying IPC-2221 Standards in Circuit Board Design”, updated as of July 20th 2021.

Clearance is a major consideration for PCB design. Characteristics of schematic design
such as parasitic capacitance and inductance mean that we will have to take into the
account the gap between individual parts and copper runs - these considerations are
well documented, and as a result have been included in the IPC-2221 standard. The
different clearances within a PCB are categorized by what part is under consideration -

81

Below is a table which outlines the various components on a PCB and their respective
minimum tolerances as per IPC-2221.

Component Leads 0.13mm for up to a voltage of 50V

Uncoated Conducting Area 0.75mm

Test Probe Sites 80% of component height, 0.6mm min. & 5mm max.

Mounting Hardware <6.4mm protrusion below PCB surface

PTH relief in heat sink 2.5mm larger than hole

Liquid Screenable Solder
Mask

0.25mm (w/ 0.25mm dam)

Photoimageable Dry Film
(<0.0635) solder mask

0.051mm (w/ 0.127mm dam)

Photoimageable Dry Film
(0.066 to 0.1mm) solder
mask

0.051mm (w/ 0.25mm dam)

LPI solder mask 0.051mm (w/ 0.1mm dam)

Table 10: Clearance Tolerances Outlined in ICP-2221 (via protoexpress.com)

Note the inclusion of dams for the standards outlining solder masks. it is especially
important that this gap be maintained, as not only are we accounting for electrical
characteristics but we also want to allow for the proper installation of surface-mount
parts.

Creepage is another metric that is scrutinized as part of our PCB standards. Creepage
is hard to distinguish from clearance for some metrics, and so a model has been
included below to demonstrate the difference. It is included mostly for our benefit, so as
to keep the standards within context while designing our PCB.

82

Figure 36: Clearance vs Creepage on PCBs (via protoexpress.com)

By IPC-2221 guidelines, we should make it a priority to maximize the space between
conductors such that creepage is large enough to accommodate etch compensation for
all physical components on the board. This etch compensation is generally measured
as twice the thickness of the etched copper on the board.

The third major component of the IPC-2221 standard lays out the recommended
thicknesses for all copper traces on the board. The propagation of current through a
copper trace could prove dangerous if the copper is too thin, and at high enough
resistance and current magnitude, will burn the traces and damage the card. As part of
the standard, our lowest tolerable copper trace thickness is calculated as a function of
the current it is designed to sustain. Our thickness in (defined as mils) is𝑜𝑧 1. 378
defined as where w is width in mils and is area, calculated as𝑡 = 𝐴 / (𝑤 * 1. 378) 𝑎

. is defined as for internal layers and 0.048 for𝑎 = (𝑖/[𝑘 * (∆𝑇0.44)](1/0.725) 𝑘 0. 024
external layers.

4.2.1.8.2. Soldering Standards

The inclusion of PCBs into our project naturally leads us to the need for Soldering. The
term “solder” refers to both the action of creating permanent electrical junctions by use
of melting metal onto connections as well as the metal itself. For hobbyist applications it
is most utilized for connecting PCBs to other components across a project - in order for
our components to be powered and communicate with one another they need to be
connected electrically, and by far soldering is the most efficient way to accomplish this

83

as individuals. The standards that govern soldering components are largely defined
under the IPC J-STD-001 Standard, and define what types of solder can be used for
industrial applications as well as specify what an exemplary solder connection should
look like. These standards are designed in order to ensure that connections made
throughout a project last as long as possible with as little failure as possible, maximizing
reliability of electrical components. In the following section we will go over the relevant
components of the standards to our project, as outlined by Sierra Circuits.

Under the J-STD-001 standard, a number of general rules of thumb are outlined. These
are more or less for industry practices, but apply to our project as well as good industry
practices yield high quality results no matter who complies. It first states that cleanliness
be emphasized to prevent the contamination of tools and surfaces - this is useful for any
and all technical projects, but especially to ours as we will be working with small
mechanical components which may be adversely affected by poor soldering techniques.
Second it states that heating and cooling rates should be equivalent, and that multilayer
chip capacitors are treated as thermal shock-sensitive to protect against thermal
excursions. Adhering to this would be useful to prevent damaging components by
heating or cooling them too fast.

The third specification is two-fold: it states that strands of the wires should not be
damaged and that the solder must wet the tinned area of the wire. What this essentially
states is that the solder must completely cover the junction, as wetting refers to the
bonding of solder to metal and the tinned area refers to the area of wire we want
soldered. These two standards together help ensure that the connections made
between pins and wires or wire-to-wire junctions are sound and will not detach if
non-excessive force is applied. The fourth, fifth, sixth and seventh statements apply
mostly to packaging and manufacturing inspection, and thus can be safely disregarded
as they are not relevant to our project.

The standard then goes on to define what a tolerable solder looks like. Specifically, the
standard discusses soldering Header Pins. Header Pins are the pins that come out of
integrated circuits and bare-PCB devices, such as most LCD screens. On a PCB, these
header pins are utilized using through-hole mounting to the PCB (Often written as PTH,
Plated Through-Hole mounting) - the connection is established by soldering the pin to
the hole surrounding it, as the copper is located in and around the hole that the pin
enters through. The copper surrounding the hole on the opposite side that the pin enters
from is referred to as the pad. A number of characteristics make up an effective solder
junction for PTH components. The most important characteristic of a good solder is that
the PTH be entirely filled with solder. Additional specifications are that the meniscus
(surface) of the solder when traveling from the tip of the pin to the pad be concave, and
that the pad itself is well covered with solder, but not covered so much that it causes the
solder to spill over to other pads. The following is a figure meant to demonstrate this
criteria.

84

Figure 37: Model of Exemplary PTH solder

This specification is meant to ensure that the soldered lead stays strong throughout the
component’s lifetime. Thus, maintaining this standard will be helpful for the final design,
as this type of connection is used for a number of connections - For example, the 78xx
series family of Linear Voltage Regulators which utilize through-hole leads.

The standard also goes into detail about the characteristics of surface mount solder
connections. Most base electrical components nowadays such as resistors or inductors
use surface mount profiles - as such, it is important that we understand these standards
so as to make sure the connections we make last as long or longer than the parts
themselves. For rectangular or square end chip components, it is recommended that
the fillet height (height that the solder is bonded up the end of the chip) be the±25%
height of the chip from the board.

4.2.1.9. Power Supply Standards

The power supplies that are used to power the devices we come across every day
come in extremely varied capacities and outputs, and as such the standards that govern
them are similarly varied. To help catalog these circuits and ensure that the standards
are as thorough as possible, circuits are put into one of a few classes based on the
power characteristics that govern them. Each circuit classification comes with a set of
commonly accepted safety practices that pertain to the attributes of the class. Below is
a table that establishes some circuit definitions which are important for standard
classification and summarizes their characteristics. These definitions are provided by
CUI Inc. and are generally accepted among the electrical engineering community.

85

Hazardous Voltage >42.2 Vac, >60 Vdc, without current
limited circuit

Extra-Low Voltage <42.2 Vac, <60 Vdc, Separated from
hazardous voltage by basic insulation or
more

Safety Extra-Low Voltage Can’t reach hazardous voltages between
any two parts or a part & ground, under
fault condition doesn’t exceed 42.4 Vac or
60 Vdc for more than 0.2sec. Two levels
of protection from hazardous voltages

Limited Current Circuits Under fault conditions, current drawn is
not hazardous. Current from frequencies
<1khz dont exceed 0.7mA ac or 2mA dc,
frequencies >1khz currents dont exceed
(0.7 * freq) or 70mA.

Limited Power Source Inherent power limiting, linear/nonlinear
impedance power limiting or regulating
network power limiting power supply.

Table 11: Power Supply Circuit Definitions (via CUI)

Going by the definition given to us by the CUI, the sum total of our system will be
defined as an Extra Low Voltage circuit - Our highest voltage draw will be as a result of
the servo assembly that will be used for the mechanical action. The voltage draw, per
component, of our servos is approximated at 5 volts. If we wanted to step down
voltages in order to lessen current load on the components throughout the device, we
could still maintain well below 60 volts for supplying the device with power.

Additionally, CUI outlines some safety standard classifications which help define how
dangerous a piece of equipment or a project is to operate or maintain. Class I devices
are protected from electrical shock with only basic insolation and grounding. These
devices are required to have ground connections on components which could be
expected to reach dangerous voltages in the event of insulation failure. Class II Devices
are similar to Class I, only they are protected using double or reinforced insulation which
removes the requirement for a ground connection. Finally, class III devices operate from
a Safety Extra-Low Voltage supply circuit, which inherently protects them against
hazards such as electric shock or dangerously high voltages.

4.2.1.10. 3D Modeling and Printing Standards

86

For interoperability between different 3D modeling softwares and 3D printing devices,
there are standard file types to store the data for the designs.

4.2.1.10.1. STEP File Standard

The ISO 10303-21 standard, also known as the STEP file standard, is the standard
used for storing 3D models that can be transferred between different 3D modeling
softwares. It is an ASCII-based file type, so it can be read by humans via notepad or
some similar text file processing software. Unfortunately, the standard is not freely
available and is quite complex. As a result, the standard may not be fully supported by
every 3D design software, which will make it difficult to interoperate between different
3D modeling softwares. For this reason, each 3D modeling software usually has its own
file format that works better for that particular software. It may be a good idea to stick to
one CAD software in order to avoid file transfer issues.

4.2.1.10.2. STL File Standard

The STL file standard is a simplified 3D model standard typically used for 3D printing.
Because it is so simple, it is not ideal for 3D modeling, as that typically entails complex
operations that are not easily supported by STL. However, the simple description of the
geometry of a design provided by an STL file is perfect for 3D printing, where the static
geometry is all that is needed. Most CAD software is able to export to this file type, so
whichever 3D modeling software we choose, we should be able to generate these files
for the purpose of 3D printing. Afterwards, the TI lab technicians can handle the rest.

4.2.1.10.3. SOLIDWORKS File Standards

SOLIDWORKS has several file formats that it uses to store its designs. The SLDPRT
format is used for storing the designs of individual parts. A single part is one cohesive
block of material, and is typically manufactured separately from other parts. Once
several SLDPRT files are made, they can be assembled together in a SLDASM file.
This places all the parts together based on mating rules, to ensure that the parts will be
able to interoperate correctly once they’re assembled in the real world. For example, we
can find existing files for the standard motors that we use, and then assemble that
together with the 3D mounts that we design. Even better, we can actually design the 3D
printed parts inside of the SLDASM file, and use the geometry of the motors as a
reference. This will ensure that the final mounts will fit perfectly with the motors.

87

5. Hardware & Software Design Details

5.1. Hardware Design & Part Details

5.1.1. Mechanical Components

Thanks to their cheap cost and ease of use, we have decided to go with servo motors to
implement both the strumming and fretting actions on the guitar. The 30 servos will cost
$60 on amazon, which is not a bad price. For mounting the servos to the guitar, we will
be designing a 3D-printed mechanism based on a free and open-source file we found
online.

5.1.2. Power Supply

In order to decide on a power supply, we need to know the power demands for our
project. The following is a table that summarizes all the power demands for the various
components we will be utilizing. These power demands are taken from the data sheets
of each component included in Appendix D.

Component Voltage Demand Current Demand

ESP32 Microcontroller Min: 1.8V
Max: 3.6V
Recommended: 3.3

Recommended 0.5A

74HC595N Shift Register Min: 2V
Max: 6V
Recommended: 5V

80uA @ Recommended

SG90 Servos (x30) 5V ~270mA per servo(moving)
10mA idle

Table 12: Component Voltage and Current Demand

As we have mentioned in the research section, a major consideration we will have to
make is how the high number of SG90 servos will affect the circuitry. Connecting each
servo in parallel is the preferable option and will prevent us from reaching excessive
voltages, but the current draw that these devices would collectively require could proves
to be a heavy burden for consideration of power demands and supply. We will have to
monitor this closely, and if it becomes an issue we will have to make clever use of the
DC-to-DC converters considered for the project.

When ensuring that all our electronics are adequately powered. The item that will cause
the biggest issue will be the servo motors as they require a fair bit of current. Operating

88

they need around 100mA idle they draw around 10mA so at a minimum we will need to
have our power source be able to push 300mA for servos and that is assuming they are
all off. If we go on the safe side and assume we have a maximum of 12 on at a time we
will need to be able to produce around 12*250mA(Active servos) + 18*10mA(idle
servos) + 80uA (Shift register) which is around 3.2 A. In this scenario when selecting
our power supply it is important we get something that can provide the 5 V needed to
power our electronics while also providing the current we need.

Based on our Power Supply selection, we will elect to utilize the ExpertPower 12V 8AH
Sealed Lead Acid Battery. The characteristics of the battery are favorable, outputting
above our 5V regulation floor with a 12V output voltage along with being able to tolerate
8A of current. Additionally, the battery is rated to output 8AH, which should give us an
impressive battery life when considering that the servos will only be at max current draw
for a small amount of their total operating time. Finally, the battery is of sufficient size to
implement into the form factor of the guitar that we will be modifying and, if not be
hidden entirely, will not be easily noticeable when placed under scrutiny.

5.1.3. PCBs

This section will go into detail about how each component will be consolidated onto
PCBs. Primarily, this will encompass our microprocessor and how it will be integrated
into the project so as to communicate with the mechanical components. For our project,
we will also integrate voltage regulation in order to properly supply power to said
components.

5.1.3.1. Surface Mount vs Throughput

When selecting the individual electrical components we will be using in the circuit
design we will need to make a decision on what type of mounting we will choose to use.
For us the easiest solution may be to use surface mount, for one we don’t have the
most experience with soldering so this solution offers us an easy way to not only mount
the components but also to remove or make any adjustments to the positioning of
needed. The major drawback with this issue is that with our lack of soldering experience
we can mess up the connection and connect them in a way that their connection is
lacking since it connects in small areas on the board. One thing we can do to combat
this issue is use throughput mounting components. This will make the component
mount through the board onto the backside where they will be soldered. The benefit
with this is that we will have a higher connectivity since the lead runs through the hole
and makes sure our connection is more reliable. This will be a little trickier and we must
have the manufacturer cut pre-cut holes into the PCB designated for the points. This
solution also is a little bit harder to make adjustments and move things around to
troubleshoot things. With this being said we will go forward using surface mount
electronic devices and if we come into any issues with the PCB and not our design we
will make a switch to throughput devices on our next PCB.

89

5.1.3.1.1. Component Size

When selecting the component size we want to use there are a couple different factors
we need to take into account. From research it is important we do not make our
components too small in size, with this it will make everything much harder to solder on
and could lead to damaging our components. At the same time we don’t want to make
all the components too big because this not only drives up the cost for the PCB but it
also eats up more of our limited space for our microcontroller and other devices. Ideally
we get a size in the middle which appears to be 1206 or maybe a 1210 depending what
we decide when we actually receive them.

Figure 38: Component Sizes with Dimensions

5.1.3.2. PCB Size

The size of Our PCB will be reliant on what we decide to put on it, essentially it can vary
if we decide to mount some of our other electrical devices onto it such as the
microcontroller and the power supply. While these are options we can implement for us
it may be easier to keep them separate but all near each other in some sort of housing
unit. For us our goal will be to minimize the size of the PCB since we are limited by the
amount of space we have on the guitar. Even though we will minimize it as much as
possible we need to take in account any wires that may interfere with each other if
located too close together.

5.1.3.3. PCB layers

When picking out our custom PCB we need to decide how many layers we need to
have. This is something that we will choose and it is dependent on how expensive and
complex we want everything to be. The different layers consist of different properties.
The most common is to have a 4-layer PCB with one layer being for our voltage which

90

in our case it would be 5 volts and another layer would be the ground layer. Those two
are middle layers; the top and bottom layer are used for soldering the electrical
components onto the PCB. Another option would be a 2 layer which would allow us to
have traces on both sides. The main difference is between the complexity in the circuits
we are designing. In our case we have some complicated components and a lot of
connections. In order to handle all the different connections we will use the 4-layer PCB
for our custom design.

Figure 39: 4-layer PCB diagram

5.1.3.3 Motor Assemblies Voltage Regulator

The Motor Assembly will consist of 30 PWM-controlled SG90 Servos, split across the 6
servos used for strumming and the rest used for fretting the neck of the guitar. Each
Servo has a 270mA max current draw, leaving us with a max theoretical current draw of
8.1A and minimum draw of 300mA from the servo assembly when looked at as a
singular equivalent load. The motors will be attached in parallel, with each motor
requiring a voltage of 5V to operate.

To realize the above specifications, we will be utilizing the TPS568231 Switching
Voltage Regulator from Texas Instruments. The Power Supply we will be utilizing has a
voltage output of 12V, which falls within the tolerable input voltage for the TPS568231.
Below is a schematic that realizes a conversion of 12V to 5V with the TPS568231. Note
that the specific part in question is not available on Ultra Librarian - rather, a part with an
identical form factor is used in its place for this schematic. This part is the TPS568215,
and is only a placeholder; The circuit will eventually be implemented using the original
part in question.

91

Figure 40: Motor Assembly Voltage Regulator

For clarity, below is a table correlating each auxiliary passive component to their
respective values. In this configuration, the regulator will yield a regulated output voltage
of 5V and a max output current of 8A.

R3 10kΩ C1, C2 0.1𝜇F L1 2.4𝜇H

R4 82kΩ C3, C4, C5, C6 0.22𝜇F

R5 51kΩ C7 0.047𝜇F

R7 82.5kΩ C8 4.7𝜇F

R9 10kΩ C9 0.1𝜇F

R6, R8, R10 Short C10 56pF

C11, C12, C13, C14 47𝜇F

Table 13: Motor Assembly Component Values

From the values discussed in our research section, R7 is our upper feedback resistor
and R9 is our lower feedback resistor. X1-1 is the header pin that correlates to our input
voltage while X1-2 is the pin for our output voltage. Note that L1 is recommended in the
datasheet to be an Iron Core inductor.

92

5.1.3.3.1. Motor Assembly Voltage Regulator PCB

We went with eagle in order to design and create our PCB layout, we went with it due to
the familiarity that we have with it from Junior Design as well as its ease of use. In order
to design our DC to DC converter we went to TI’s WEBENCH and typed in our
specifications into their design interface since we had a 12 volt input from our battery we
decided to give it +/- 1% so 11.9 to 12.1 min and max input voltage respectively. We
need our max current output to be 8 amps and an output voltage of 5 volts. There is
also a section about design consideration which is essentially what we have to do is
select if we want to have low cost, high efficiency, and balanced. We chose to go with a
balanced option to give us the most options.

Figure 41: PCB Design Interface

From there we got the schematic in the section above we needed and we imported it to
our eagle program. We were able to switch it to our board layout. Once we got to the
board layout we had to use all the knowledge we have learned from junior design and
placed our footprints in appropriate spots that would make the wiring for the project
easier. Once all the footprints were carefully placed we went through and placed vias
around which connected the planes. We also used the polygon tool to outline the top
and bottom planes accordingly. After all that was done we got our final PCB design for
the motor assembly voltage regulator.

93

Figure 42: PCB for Motor Assembly

5.1.3.4 Microcontroller Voltage Regulator

Similar to the motor assembly, the microcontroller will have a switching regulator
controlling its power input. The ESP32 has a minimum input voltage of 1.8V and a
maximum input voltage of 3.6V. Thus, we will be supplying the Microcontroller with an
input voltage of 3.3V due to its popularity in most electronic devices.

The current demands of the microcontroller is negligible, especially in comparison to the
considerable demand that the motors draw, and thus less emphasis has been placed on
tolerances for current. For our Microcontroller switching regulator we will be using the
TPS62992-Q1. The range of output voltages contains 3.3V and it outputs a maximum
current of 2A, both of which meet our design criteria. Additionally, the TPS62992-Q1
features a slew of safety features such as overcurrent protection which will help protect
our Microcontroller, it being the most delicate of our electrical components. The
following is the schematic of the switching regulator circuit that we will utilize for the
microcontroller.

We used the same TI WEBENCH program for this regulator however the design
specifications were different. We had the same input voltage and it had a different
output current due to the voltage limit of some of the other devices so we chose an
output voltage of 3.3 volts and a current of 2 amps. We used the same balanced
configuration and we decided to go with this schematic due to its simple design and lack
of parts required.

94

Figure 43: PCB Design Interface

The schematic below will be exported to eagle and then we will make sure everything is
looking good and make any adjustments we need to. Also when deciding we looked to
see what had the highest efficiency and a low BOM list. We ended up finding a
schematic with an efficiency of 91.6% and 9 components.

Figure 44: Voltage regulator for Microcontroller

5.1.3.4.1. Microcontroller Voltage Regulator PCB

When we were designing the Microcontroller we needed to make sure our ground layers
are connected in this situation. To do this we used our polygon as well as the ratsnest to

95

fill in our layers we put vias to connect the two layers. This will be good for us to have
two ground layers. This is the same procedure as our previous. The only other thing we
need to do is to wire the board using the auto route tool and then fix any issues the
board may be having. The last thing for us to do at this point would be to get quotes on
PCBs and have them shipped to us.

5.1.3.5. Wire Selection

It is very crucial for our project that we have the right wires running through our circuit.
Our issues with wires can be split into two different categories one is resistivity of the
wires and the other is the amount of current that can be passed through the wires to
supply our servo motors.

5.1.3.5.1. Resistivity

When using smaller wires to jump breadboards we don’t typically notice a voltage drop
in the circuit and that is due to the length, for this project we will be having wires travel a
decent distance on the guitar regardless where we put the PCB since we will have
servo motors on both sides of the guitar. In this case we need to be aware of any
resistivity the wire may possess. With this it could cause our servo motors to receive
insufficient voltage which can be a headache to troubleshoot. So this potential issue
may need us to adjust the regulator we go with in order to account for the resistive load
of the wire. So instead of 5 volts coming out of the regulator we may need 6, that is
within the operating range of the servo motors so there should be no issues with

96

providing too much voltage. And if we need to drop the voltage going to the
microcontroller we can put a resistive load to draw some of the voltage. While a solution
to this problem would be to find a wire with the lowest resistivity we run into our next
issue. Calculating resistance over the wire would be R=ρL/a in this formula the only
thing to decrease our resistivity is to increase the thickness of the wire. This creates
issues with space if the wire needs to be too big it will interfere with the space in the
surrounding wires. Another issue we run into is the amount of current that is running
through the wires, which we’ll go into in the next section.

5.1.3.5.2. Gauge of the Wire

Since some of our project requires a fair bit of current to run we need to make sure we
get an appropriate gauge of wire to handle all the current that can be run in it. If we do
not this could cause issues with the current being received as well as damaging the wire
internally. In order to increase the amount of current that can be passed through we
need to make our wire thicker so if the wires in the lab do not work we will need to look
for wires with lower gauges but that runs into the issue of space on the guitar. However
in order to make sure the guitar functions as intended we will need to find a happy
medium with the thickness of the wires. Typically the amount of wire used is around 20
gauge wire. Since we do have a higher amount of current we will be using we may have
to go down in our gauge number to possibly 16 just to take care of the current amount.
The price may increase ever so slightly based on the gauge size. The only other thing
we may possibly need to worry about is the amount of space we need to have allocated
depending on the thickness of the wires. We should be able to place all our wires with
plenty of space due to the wires for 16 gauge being relatively thin. We also need to
worry about soldering. On the ESP 32 the output pins are very close together and in
order for them to not short themselves out we need to make sure our wire soldiers are
precise and not excessive. If we solder we need to strip the wires very little amount as a
lot of wires jumbled together like that they could have some excess wire exposed and
short each other out. And we also can’t cut too much since we need a fair bit of wire so
we need to just cut a little bit and be precise with all our soldering and our wires. Below
we can see the gauge sizing chart relatively and we can see the current amount that
they can handle.

97

Figure 43: Wire Gauge Diagrams with Corresponding Currents
https://www.electricaltechnology.org/2022/04/american-wire-gauge-awg-chart-wire-size-

ampacity-table.html

5.1.3.6. Passive Component Supplier

In order to supplement the above circuits, we will need to select a supplier for the
various miscellaneous parts that will surround our main parts. Preferably, our selection
should be diverse and not become a bottleneck in the future as we are forced to hunt for
parts across other companies. To this effect, we will be leaning heavily on Digikey and
Mouser as our primary suppliers - they have developed a reputation as having a wide
selection of parts, and thus we will be happy to utilize them for our project. The following
section details notable attributions for the parts we will order; as ordering individual
parts that cost within the order of cents is generally negligible in the grand scope of the
project, we will only go over the general considerations we will keep in mind as we go
about transferring the schematic diagram to a real PCB.

5.1.3.6.1. Power Components

Power components are especially of note when we look at the operating conditions of
the Motor Assembly Regulator Circuit. Because of the notable amount of current that
will be flowing through the output of the regulator, we will need to look for components
specialized in receiving high power. For example, both regulators utilize an output
inductor - we will likely be using a type of iron core inductor to realize the circuit, as they
are generally rated for higher power values.

98

https://www.electricaltechnology.org/2022/04/american-wire-gauge-awg-chart-wire-size-ampacity-table.html
https://www.electricaltechnology.org/2022/04/american-wire-gauge-awg-chart-wire-size-ampacity-table.html

5.1.3.6.2. Low Noise Components

As the signals traveling through our dc/dc converters lack a frequency component,
noise will not play as big a factor in our power circuitry. However, the amount of noise
generated by our passive components will matter for our microcontroller as we will be
dealing with signals. In order to ensure we have as high a signal-to-noise ratio as
possible, we will be utilizing components such as thin film or wire wound resistors where
we can in order to make sure that our circuitry acts as expected.

5.1.3.6.3. Power Supply Switch

Because we are utilizing a portable power supply, we want to be able to turn it off for
moments where we are not operating the system. Thus, we will be utilizing a switch in
order to cut power from the supply to the rest of the project. Specifically, we will be using
the SPST Standard Toggle Switch from Parts Express.

5.1.3.7. Power Configuration

The below figure is a block diagram of the final design for the power system in our
project. In this way we will ensure that each component is operational upon connection
of the power supply in such a way as to be protected from overcurrent conditions Note
that the switch will be a single part, chosen as discussed in section 5.1.3.6.

99

Figure 44: Power Configuration

Node A is an unregulated +12V Supply sourced from our ExpertPower Battery Pack
Power Supply. It will maintain a maximum current of 8.6A but will maintain an average
current of approx. 25% the maximum, dependent upon the load placed by the Motor
Assembly.

Node B is a regulated +5V supply with a max current of 8.1A. This current will be
distributed across a parallel network, with each SG90 servo motor connected in parallel
in order to ensure each motor gets the supplied 5V.

Node C is a regulated +3.3V supply with an average current of .5A, as described by the
input characteristics of the ESP32. Note that the Microcontroller Regulator PCB features
a part with in-built overcurrent protection as an extra precaution against part damage.

5.1.3.8. Signal Configuration

When looking at the signals for the servo motors they will differ based on the purpose
for that specific servo motor meaning if it is a strumming or a motor that is used to press
the fret. They will differ most likely by the signal that is sent to them. Below we can see
an example pulse of something we would want to see coming into the servo motors.

Servo motors that use strumming will need to be strummed across the strings for this
we will need to give them a max pulse which allows them to rotate 180 degrees. This is
because we need the servo to strum across the string in order to produce a note. While
moving it 180 degrees will be our best decision, it is important to note that we will need
to send another pulse that rotates it an additional 180 degrees back to its original
starting position in order for it to get ready to strum again. When programming the
signals we don’t necessarily need a full pulse to get the string across but we do need to
make sure we can get our servo motor to its original starting position or somewhere
close to it so that we make sure we strum the guitar strings when we want to. Also it
needs to be as quick as possible so that is something we will need to be aware of and
we will need to practice the timing on the actual guitar in order to perfect our pulse
signals. Below we can see an example pulse of something we would want to see
coming into the servo motors.

100

Figure 45: Example Signals using 800° Rotations for Strumming Assembly

The fret servo motors will be a little different as it wont need to be a full 180 degree
rotation in order to press down depending on the route we take, if we go the route of
using the 3D printed linear actuator we will need to use 180 degree pulses at a time in
order to go up and down. This is due to taking advantage of the rotational motion in
order to create linear motion using 180 degree turns. These signals will be different from
the strumming signals as they would need to be held down for a longer time like a little
bit before and after the strings are strung. That will be in order to make sure our note is
clear and not skipping notes. So the time in between signals will need to be longer
before resetting to their original positions of open. If we went a different route of
pressing the frets our signals would look different as we more than likely would not need
to go 180 degrees at a time and can take advantage of 90 degree rotations. If we go
this route we would need to go back to the starting position each time with 2 pulses one
being max pulse and the next being a half pulse to get it to the correct duration. Below
we can see an example pulse of something we would want to see coming into the servo
motors.

101

Figure 46: Example Signals using 180° Rotations for Fretting Assembly

102

Figure 47: Example Signals using 90° Rotations for Fretting Assembly

5.1.4. Microcontroller

The microcontroller we are using is the ESP32. We initially wanted to use a single board
computer to give ourselves more flexibility with the programming and to take advantage
of the various types of I/O available on those boards, such as USB-A and Wi-Fi. When
we found the ESP32 however, we were impressed by its low cost and Wi-Fi and
Bluetooth support. This will make the programming more complicated in 2 ways: 1, we
will need to use MicroPython to implement the MIDI processing code on the
microcontroller, which may not be as flexible as a full implementation of Python, and 2,
we will have to implement some kind of protocol to send the MIDI files over Bluetooth,
as there are no physical ports that we can use for the file transfer. This Bluetooth
protocol will run on an external computer, but will only be used for uploading files. The
ESP32 has plenty of non-volatile flash memory that can be used to store the songs so
that they can be played without a Bluetooth connection.

The ESP32 has 3 UART interfaces and each of these can receive and transmit at 5
Mbps. It also supports Bluetooth and Bluetooth low energy and is capable of having
multiple channels and can interface with SPI and UART, It can only interface with UART
up to 4 Mbps which given the size of the files that we are sending to the microcontroller

103

this will not be a problem since the requirements for the autonomous guitar specify that
the maximum MIDI file size is 50 KB. Bluetooth on the ESP32 is compliant with the
Bluetooth 4.2 standard. The ESP32 has 2 sets of pins for SPI so the autonomous guitar
will have to utilize a daisy chain configuration for SPI to make the shift registers work
since it will need 8 shift registers. The ESP32 has 1 set of pins for the I2C protocol this
is will work fine for the Autonomous Guitar since there is only one thing that needs to be
connected via I2C.

The ESP32 has 5 power modes, they are Active mode in which everything on the
microcontroller is turned on including all antenna functionality such as Bluetooth and wifi
having this mode on can draw the largest amount of power depending on which
transmitter/receiver is being used. Modem sleep mode will turn off all Wi-Fi/Bluetooth
functionality. This method will not be able to be used for the Autonomous guitar because
the user should be able to stop the song at any time from the user interface on an
external device. Light-sleep mode will pause the CPU while RTC memory and
peripherals connected to the RTC clock are still running, the system can be woken up
via interrupts or the RTC timer, this could be used for the autonomous guitar. Deep
sleep mode only powers on the RTC memory and the RTC peripherals Wi-Fi and
Bluetooth connection will be stored while in this low power mode. Hibernation mode
turns off everything but the RTC timer and a few RTC GPIO pins which can wake the
microcontroller up in case of an interrupt.

In the Autonomous Guitar the use of the microcontroller is crucial to the entire design
and is the main part of the Autonomous Guitar, it needs to communicate with the
personal computer or smart device to get the MIDI file, once on the microcontroller then
the MIDI file needs to go through the algorithm to be translated into the best
interpretation of the guitar notes to play that note, then the microcontroller needs to
decide which servos to activate to play that note, it also needs to control the LCD
screen will display the current status of the guitar.

5.1.4.1 Wireless Communication for Microcontroller

The chosen method of wireless communication was BLE over standard Bluetooth and
WiFi, WiFi uses LAN which is longer range than the Autonomous Guitar will need, it is
simpler to set up UART with Bluetooth protocols than with WiFi, and the transmission
speed from the PC to the microcontroller will not be a problem because the files and
commands that will be sent through the computer will be small enough to not make a
difference, and the Autonomous Guitar will wait until the MIDI file is uploaded to take the
user input to play the song. WiFi also has the issue with multiple devices using WiFi in
the area that could be connected to the same WiFi. This would be a problem that could
be worked around but it would make the wireless communication structure more
complicated than it needs to be. WiFi also seems to be more complicated to set up to
be used with UART unlike bluetooth and BLE which have the functionality built into their
libraries for serial communication.

● BLE uses less power than Bluetooth or WiFi.

104

● Being on a PAN means that there is no other signal it can get confused with.
● The transmission between the PC and microcontroller does not need to be very

fast since BLE is the slowest option.

5.1.5. Circuit Design

We can begin to construct our basic circuit design. The base of the circuit design can
come from the three cables that are connected to the servo motor. We will have a power
source that will be supplying 5 V(DC) to the servo motors. We will connect the power
line to 5 V for the servo motor and connect all their grounds together and each control
wire will be hooked up to an independent pin on our shift registers. This diagram will
give us a good look into what the PCB will entail. As for the power source we will more
than likely use some regulator in order to make sure we don’t overload the circuit.
Below is a diagram for what the circuit will look like.

105

Figure 48: Circuit Design Diagram Prototype

106

This schematic demonstrates the daisy-chaining capability of the shift registers. The
power and ground connections of nearby servo motors can be easily chained together,
but the PWM signals need to be individually connected from the 4 shift registers.

5.1.6. 3D-Printed Mounting Hardware

The servo motors need to be very closely packed, so the mount will be sized such that
three servos are placed as closely as possible, with a slight stagger so that the
actuating arms don’t hit each other. See the following drawing:

Figure 49: 3D Printed Servo Mount Prototype

The 3D-printed part is a simple rectangle, and the servos can be screwed into it. Next,
we need to duplicate this for the other 3 servos, and make sure there is also a
side-to-side stagger so that the 6 motors all hit different strings.

107

Figure 50: Strumming Servo Mount Prototype

Here we can see all 6 servos organized in a strumming formation. There also need to
be cutouts for the power and signal wires that come from the servos.

108

Figure 51: Fretting Servo Mount Prototype

This assembly is for fretting. It is two copies of figure 49 stacked on top of each other
and staggered so that actuation arms may be placed vertically extending from the servo
arms.

109

5.2. Software Design

Figure 52: MIDI Representation Visualized
https://blog.landr.com/what-is-midi/

There will be three major components of the software side of this project. They will be
as follows. First, a general purpose algorithm which will read and process MIDI file data
(which is laid out like the timestamped piano notes shown above) and convert them into
a playable stream of notes on a guitar’s strings and fretboard. Second, there will be a
user interface for uploading the file to the microcontroller via bluetooth as well as
playing/pausing/stopping playback of the song on the actual guitar. Third, as a stretch
goal, we would like to implement the UI on a cross-platform mobile application for even
more portability and flexibility.

5.2.1. Algorithm

We would like to be able to process any given MIDI file that satisfies our constraints
(under 50 KB). In general, most freely available MIDI files online in databases contain a
wide range of notes potentially covering the entire western scale (or a full piano’s worth
of notes) and potentially having several overlapping notes as well. As per our
requirement specifications, our playable note range on the guitar is only from E2 to G#4
(approximately 2.33 octaves), which of course does not cover every possible note on
the western music scale.

5.2.1.1. Range Compression

110

https://blog.landr.com/what-is-midi/

In order to resolve this, we will have the first pass of our algorithm first attempt to
transpose (or shift) all of the notes in our song by some integer, , representing the𝑥
number of half-steps up (positive) or down (negative) to shift by which will minimize the
number of notes in our song that are outside of our playable range. This step should
come at little to no reduction in sound quality, especially to the untrained ear as most
humans do not have perfect pitch (that is, as long as the relative differences between all
the notes in the song remain constant, it should still sound virtually the same just at a
lower pitch). If necessary, this step could technically be optimized by using a ternary
search for the shift amount, however due to the small number of shifts, our current plan
is to use a simple linear search for the shift amount, for ease of implementation without
a severe effect on performance. So generally, the first pass of the algorithm will try to
ensure that most notes outside of our playable range have been converted into our
playable range.

Now, in the case that the particular song simply does not fit in our playable range, we
will need a second pass of the algorithm to completely ensure that all notes outside of
our playable range have been converted into our playable range by simply finding the
closest matching note in an interval we can actually play, using the formula: ,2𝑛 * 𝑓
where and). For example, if after the first pass, we still have note𝑓 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑛 ∈ 𝑍
C2 as in the figure below, that would be converted to C3 by doubling the pitch.

Figure 53: Playable Note Range Visualized on Piano https://synthesiagame.com/

111

https://synthesiagame.com/

Converting the notes this way may result in a minor difference in audio quality, however
it is still a great approach based on physics and music theory to “fake” notes outside our
range, keeping in mind that it would be impossible to achieve fully lossless compression
behavior without expanding the hardware scope of our project.

5.2.1.2. Handling Self-Overlapping Notes

Then, a third pass can go through and handle all overlapping notes by setting the length
of any note whose “end” time overlaps with another of the same note’s “start” times so
that it ends before the next note starts. For example, the upcoming yellow notes on E4
and F4 in the figure above would be shortened so as to not overlap with the green notes
right after. We predict no noticeable difference in sound quality. This is, again, simply a
limitation of the hardware scope of our project using a physical acoustic guitar with a
limited number of motors as opposed to digital/electronic pianos and keyboards which
can overlap notes digitally or via clever use of “sustain” or other pedals.

5.2.1.3. MIDI to 6-string and fretting conversion

This will be the meat and potatoes of our algorithm. The procedures will be as follows:

1. Define function for playing a single note via motor outputs for some amount of
time on the correct servos given the string, corresponding fret location, and
timing for that note.

2. Define function for finding out what string and what fret location a given note can
be found on.

a. This can be done by looking it up in a precomputed Python dictionary (for
speed reasons, since we will be calling this function many times per
second).

3. We can accept a user input for the filename in console (or automatically grab the
first MIDI file we find in our current directory if there is one), and parse its bytes
using Mido https://mido.readthedocs.io/en/latest/parsing.html giving us the full
message stream

4. Handle range compression and overlapping notes as in 5.2.1.1. And 5.2.1.2.
5. Iterate through the message stream sending signals to play the notes with added

necessary delay to make sure they play at the right times

5.2.2. User Interface or UI

On a laptop computer, there will be a web app with UI screen options to upload a file as
well as clickable “Play”, “Pause”, and “Stop” buttons. There will then be a drop down
selector for up to 10 uploaded songs which have been stored on the device.

5.2.3. Cross-Platform Mobile Application

112

https://mido.readthedocs.io/en/latest/parsing.html

We also plan to create a cross-platform mobile application for the controller using
Flutter. It will be functionally equivalent to the Web UI, while offering us the extra
portability and flexibility of being able to control the guitar from any smartphone.

5.2.4. Development Environment

When looking at the code for the microcontroller and all the software that will be on the
computer we will need tools to write the code, have version control between updates,
and have a way to test the transmission from the computer to the microcontroller. The
things that are important to using development environments are,

● An environment that will allow for compiling code that can then be flashed onto
the microcontroller.

● An application that will allow for sending the information from the PC to the
microcontroller.

● A method of version control that will allow every member of the team to have an
up to date version of the project.

● A method for the team to share links to sources for the project.
● An application that can help us make diagrams

5.2.4.1. uPyCraft IDE

The code for the motor control and the serial communication will be written in
MicroPython which is Python with some functionality removed. To write the code for the
microcontroller in this version of Python we will need to use the uPyCraft IDE. It will
allow us to write this and allow us to connect the ESP32 to the computer to flash the
MicroPython code to the microcontroller.

5.2.4.2. PuTTy

Since we will need to transmit files from the PC to the Autonomous Guitar it is important
that we have a way that the PC can transmit the files, we can use PuTTy to transmit to
the microcontroller since PuTTy supports FTP and port forwarding. We can use this to
test sending the MIDI file to the microcontroller. If we know the Buad rate and Buad
rates are standardized so the Baud rate that we will be using is 9600 which is what is
usually used by UART, and the port we can then connect to the microcontroller and then
upload the file. We can also test the bluetooth connection with PuTTy.

5.2.4.3. GitHub

One thing that is important for the development of the software is version control and
making sure that all the team members have the files up to date and we can revert to
previous versions of the software in case something goes wrong for this we will use
GitHub to keep all changes consistent. The code for the microcontroller, the UI, and the
algorithm will be available on GitHub, along with the schematics, the PCB layout and
the 3D image files for the 3D printer.

113

5.2.4.4. Discord

For the team to share information on the project we are using discord to communicate
with each other, discord allows for creating a server where information can be shared
and a way for the team to meet when we cannot meet in person to discuss the project, it
is also another way for the team to share files like github.

5.2.4.5. Diagrams.net

The service that we are using to make all the diagrams that we need is diagrams.net
which is a website that lets you make diagrams by clicking on the desired object to
place inside the diagram and write text boxes inside the diagram to represent code or
hardware components this is very helpful in the development process since it gives the
team a reference for what certain code or architectures are supposed to do before the
team begins to prototype and write the code or put together the hardware.

5.2.5. Microcontroller Code

When approaching the code for the microcontroller we consider the code for the
algorithm to be separate and just a call within the microcontroller code. The
microcontroller code will account for the serial communication, the LCD functionality and
the motor control operations, which will include proper timing with timers.

114

Figure 54: Microcontroller Code Block Diagram

In the Figure above is the microcontroller block diagram, not included in the diagram are
the interrupts that would move the servos since there would be too many of them to
include in the diagram. In the main function the microcontroller should start the clock to
be ready for interrupts to be triggered, it should also turn the LCD screen on and get the
values from the function calls to send them to other modules in the autonomous guitar.

In the Communication function the microcontroller will use the bluetooth functionality to
receive the file if the microcontroller is paired with an external computer once it receives
the file it will store the file on its own storage, if the storage is full it will display that to the
user on the LCD screen. When the bluetooth transmission happens it will send the title
of the MIDI file as well; this is so the title can be displayed on the LCD screen once the
song is selected to be played. The Communication function will also control taking
controls from the external device this will let the user change their song choice
depending on what songs are loaded onto the device, this will mean that when the user
starts the autonomous guitar after turning it off, the microcontroller will have to transmit
the title of the MIDI files it has on it back to the computer so the computer will know

115

what songs are available to be played without uploading a new file. The MIDI files can
be stored in arrays along with the titles and deleted from the array if the user decides to
delete the file.

The LCD will have a series of messages that can be displayed depending on what state
the guitar is currently in; these messages are shown in the table below.

State Message

Waiting for bluetooth connection “Ready Pair”

Connection established (No Song) “Waiting Input”

Song Selected “<Song title>” + timer

Storage low “Low Storage”

Tuning Mode “Tuning Mode” + string no.
Table 14: LCD Screen States

These are the possible messages that will show in the LCD screen when nothing is
connected to the autonomous guitar it will display that it is ready to pair with a computer,
when this connection is successful it will display that it is waiting for input if no songs are
currently on the microcontroller, if the songs are on the microcontroller the song titles
will be transmitted back to the computer to be displayed on the user interface on the
computer and will display the first song in the list on the LCD screen. When there is a
song selected it will have a timer to show how long the current song has been playing
for if the song has not begun to play and it is waiting for the user to play the song the
timer will display 0:00, it will be assumed that the user will not play a song longer than 9
minutes and 59 seconds, since our requirement is only 3 minutes, but assuming a user
does play a song that is 10 minutes or longer the timer will revert to 0:00, and if the user
pauses the guitar the timer should pause as well. We do not expect the storage space
being low to be a common problem since the MIDI files are so small but it can
potentially happen so it would be better to account for it to possibly happen.

When the MIDI file gets sent to the algorithm it will be output as a string containing the
note that will be sent to the servo control. Here it will make decisions for which servos to
activate to play the note it will then move the correct servos to play that note the servos
will move in a 20 degree angle across the string over the soundhole to play the note and
press down on the fret. We will control the servos with timer interrupts when we know
from the midi file how long should be between each note played for the song, once the
decision is made for the servo it will go to the interrupt for that servo.

5.2.5.1. Micropython and C integration

116

One Potential issue with writing everything in micropython is that python is very slow,
one potential solution to this problem is to integrate C into the code for the
microcontroller this will allow for serial communication and motor control to be done in C
while the code for the algorithm will be done with Python and this will make the program
run faster.

There is a way to make an external C module run inside of a Micropython program that
is on the microcontroller. The ESP32 does support micropython development but C and
C++ are the recommended programming languages generally for microcontroller
applications due to the speed benefit that having to manage the memory gives you. For
the algorithm though this speed benefit will not be necessary since in the worst case the
autonomous guitar can just run the entire algorithm on the MIDI file before ever starting
the motor control. The benefit of creating the algorithm in micropython instead of in C
with all the other microcontroller functionality is that it will be more readable and less
complex to make the conversion algorithm in micropython so using C and micropython
together on the microcontroller will let us get the added benefit of speed from
programming the serial communication and motor control in C where it will be needed
and the reduced complexity for the algorithm from python.

According to documentation on the micropython website the C program must be called
inside the micropython program for it to work, and recommends calling any libraries
used through python rather than in the C code but if using a library that is not available
in python it can be called in C. On the computer in which the development for the
microcontroller code is taking place the C module needs to be compiled separately
before the code is sent to the microcontroller.

117

Figure 54.5: C integration into micropython

The figure shows the general flow of how micropython and C will be combined in the
autonomous guitar project, everything will be inside the micropython program but each
main C function will be called individually even though each C function can call other C
functions as needed.

The inputs and outputs of the C module are as follows,
● Micropython calls C function to get the midi file from the PC, The C Function

outputs the MIDI file to the micropython algorithm
● Once converted the conversion algorithm sends its output to the servo control

inside the C module.

5.2.5.2. Microcontroller libraries

When writing code for the microcontroller we will need libraries to simplify writing the
code for the autonomous guitar project we will need libraries for the ESP32 and libraries
to operate the servo motors and bluetooth module. The Standard ESP32 library will
have pin outs for easily activating pins on the microcontroller to be used, The module for
Servos, Bluetooth and the LCD will contain functions that can will make it readable once
the functions are implemented instead of having to manually manipulate the bits.

118

The autonomous guitar project will be using both C and python libraries since we need
the speed advantage given to us by using C. It can be faster and many of the same
libraries for the ESP32 will exist in both since the ESP32 has micropython support. The
micropython documentation states that unless necessary due to not being available as
a python library that all libraries should be implemented in the python side if wrapping a
C module inside of the program. If we use Arduino libraries the ESP32 will require
libraries that are not in use by regular arduino boards since the ESP32 is not an official
arduino so the libraries would have to be ESP32 specific.

Since the main part of the microcontroller program will be in micropython the first
attempt at the programming will use micropython libraries as much as possible and as
little C libraries as possible outside of standard libraries. The main libraries micropython
libraries and modules we plan on using for the autonomous guitar project are the
following.

● From the machine module the Pin class will be imported this will make it easy to
control the GPIO pins and add names and functions used for controlling the pins

● The esp32 module will be used to control things that are related to the clock on
the esp32 and it can be used to set low power modes

● The servo functionality is contained in the pyb module so we will need to
implement this module. With this library we can control the angle and speed at
which the servo turns, it can also be used to set up the turn angle with PWM.

● Bluetooth low energy does not have a specific module made for micropython but
open source apis can be found to implement the functionality.

● For the LCD there is also no official micropython library and either a C header
must be used inside of the C module or using an open source library for a 1602
LCD screen.

The libraries for esp32 give us access to the low power modes which is a good way to
have the guitar wait for input until it gets input from the PC or the smartphone
application. It also gives us access to the functions to control the non-volatile storage
which is something that we will need to hold multiple songs on the microcontroller at
once.

The pyb library has the controls for the servos for micropython, the class for servos
inside the pyb library, that allow for the angle and speed of the servo rotation to be
altered, it is also possible to control PWM using the timer function with this class.

119

6. Prototype Construction & Coding

6.1. Hardware
With prototyping our project there are several steps that need to be taken. Ideally all
individual components will be constructed individually and from there we can assemble
and create tests in order to ensure all pieces are working adequately, in constructing the
prototype there are a couple routes we need to explore.

6.1.1. Linear servo motor

The servo motor is good for strumming and rotational movements for our purposes we
need to take advantage of linear movements, there are options out there of parts that
can be 3D printed to use linear motion with a servo motor with that being said is
important that are pieces fit so it is unlikely we will have a design for this component
until we decide which servos to get and then from there we can work on designing the
linear component. As of now it is unclear if this is a file we will be able to find available
for free use or something we will be required to design. If we must design it will be
useful to create several versions in order to determine which design works and does
not.

6.1.2. 3D Designing the Prototype

A good way to test without having it built yet is to use 3D models. We can create a 3D
model of what layout we want to use for everything by modeling the guitar and pieces in
some CAD software. Once we have all the pieces we will be using we will be able to
measure precisely and determine where everything fits together. This is a simple way to
try and create the conditions we will be using physically using the guitar and motors.
That way we can have an ideal solution without risking any damage to any of the
electrical components.

6.1.3. Physical Prototyping

As using 3D models may be a good way to go about prototyping our model it may have
some limitations which can only be accessed by physically moving the pieces to see
what we are actually working with. With the amount of precision we may need in this
example it could lead to us having some sort of accuracy issues with the 3D model
which will lead to potential inaccuracies in the real life prototype. As we may try and 3D
model the project before assembling there may be issues which can only be solved by
manually altering pieces without CAD.

120

6.1.3.1. Mounting System

With our project working on playing a guitar totally independently it is important we have
control over the individual notes that we press down, one of the biggest problems we
have with this is the physical space that we have to work with. Our goal is to work with
micro servo motors, these were the smallest version of the servo motors we were able
to find. One issue we have is that in order to place the servos on each fret they will need
to be close together but at that point they do not fit next to each other the higher up the
neck of the guitar they go. One solution we have is to create some sort of mounting
system that the servos can connect to, we would have to stagger them in order for them
to fit and this would require us to 3D print longer levers so we can stack them higher.
We will be prototyping different size arms for this to see if there is a loss of force or
response time doing it in this way. Another possible solution would be to see if there
were alternate locations for the same note so we could space them out slightly more.
However even in this situation it would require a mounting bracket that would have to be
above the neck of the guitar. While prototyping we need to ensure that we can make
this as lightweight and small as possible without any interference on the guitar, it is
possible that the mounting system will take multiple designs and it is unclear what type
of material it will be made of.

6.2. Electronics
Prototyping the electronics will involve wiring up all the components on breadboards
and running the code to see if everything functions as expected. This will require that
the code is at least somewhat functioning, but the hardware mounting of the motors
need not be complete. We can run the code on a couple sample songs and record the
movement of the motors, which should be arranged similarly to how they will be placed
on the guitar. Then, we can record the movement of the motors and slow down the
video, visually confirming that the right notes are being played at the right time.

6.2.1. Power Supply

When planning our schematic we know the voltage we need for the circuit but the
current is where we have doubts on our power supply. In order to make sure our power
supply is supplying enough current we can adjust the current that is outputted on the
power supply in the lab. If the power supply we have selected is not pushing enough
current we can design a current gain circuit that can amplify the current and then we
can power the servo motors with adequate current.

121

Figure 55: Example Power Supply Used for Testing

6.2.2. Circuit Prototyping

In order to prototype our project, we will need to have our circuitry up and running
before the final design takes shape. However, the monetary cost of PCB production
combined with the time investment in getting the board means that creating PCBs is no
small investment and impractical for our prototype. Rather than having the PCBs made,
we will instead elect to create the circuits using breadboards. Breadboarding allows us
to rapidly prototype our circuits as well as changing them as needed, saving us a
considerable amount of time. On top of this, because of the availability of breadboards
in both the senior design lab and other labs across UCF, the cost of prototyping
becomes essentially free. This, however, does not account for the cost of the parts
needed to create the circuit.

Our components must arrive before we are able to properly prototype our circuits.
Currently, they only exist as schematic diagrams - thus, we will have to ensure that we
order our components as soon as we are able.

However, we must make considerations for the type of components we will be ordering.
Because the parts we have considered are surface mount, replicating the circuitry will

122

be difficult on a breadboard. Specifically, the regulator chips are surface mount with very
small form factors which could lead to considerable difficulty in wiring up the parts to a
breadboard. Various methods can be employed to circumvent this, such as using
header pins and soldering them to the pins so that they can be mounted to the
breadboard.

6.3. Software

6.3.1. Algorithm Prototype and Construction

Figure 56: MIDI file processing in Python using MIDO library

6.3.2. User Interface Prototype and Construction

123

Figure 57: Simple Initial UI Prototype for Controller

Figure 58: Simple Song Selector Prototype for Controller

Figures U and S show our example UI made in html with the provided song drop-down
selector, file selector, MIDI upload button, as well as play, pause, and stop buttons.

6.3.3. Mobile App Prototype and Construction

124

Figure 59: Cross-Platform Mobile App Example using Flutter
https://flutterawesome.com/a-easy-to-use-and-customizable-material-flutter-button/

6.4. Integrated Prototyping
Once a few individual systems are confirmed to be working, we can construct larger
prototypes that span multiple software and hardware components. These prototypes
serve the purpose of confirming that the interaction between stages can function
correctly. Issues we could run into include low data transmission rate or quality, or lack
of compatibility. A few of these prototypes can be built during Senior Design 1, as they
are relatively simple and require only a few common parts to get working. More

125

https://flutterawesome.com/a-easy-to-use-and-customizable-material-flutter-button/

complicated prototypes will have to wait until Senior Design 2, when we’ve ordered
more parts for the project and have more time to focus on building the project instead of
writing documentation.

6.4.1. Controlling Servos with Micropython, ESP32, and Shift
Register

This prototype is our first step towards integrating our hardware and software
technologies into a single cohesive system. The idea is to get the microcontroller
operational with the programming language that we have chosen for this project.
Additionally, we will interface it with one of the shift register ICs and a few of the servo
motors that we have on hand from Arduino kits we’ve purchased in the past. The most
challenging part of the project for the computer engineers is getting this interaction to
work. We should be able to individually control an arbitrary number of servo motors with
only 3 pins from the microcontroller. This prototype will confirm that this is feasible.

6.4.1.1. Micropython Code

There exist libraries for shift registers and servos, but the specific combination we are
implementing is complex enough that it’s worth writing our own code. We want the shift
register to output 8 customizable PWM signals to individually control 8 servos. This is
achieved in code by splitting the PWM into 3 stages: 1. All signals are high, 2. Only
active servo signals are high, 3. All signals are low. At the beginning of each stage we
write the proper values to the shift register one at a time until they’re all loaded, then
forward those signals to the shift register output. Between each stage we use a tuned
time.sleep command to get the proper delays. Ideally, we could calculate these
time.sleep delays based on the desired input signals to the servo motors and the angles
we want them to move to. However, The python code itself has a significant delay, so
the time.sleep delays need to be shorter than would be expected in order to get the
proper operation.

6.4.1.2. ESP32 Programming

The ESP32 uses a unique UART communication protocol that requires the CP210x
USB to UART Bridge VCP Driver to be installed on a personal computer. Additionally,
we need to flash the Micropython runtime onto the microcontroller so that it can interpret
the code we upload to it. This is done using the uPyCraft IDE. Once all this is done, our
Micropython code can operate the ESP32 digital output pins. This can be easily
confirmed by writing values to pin 2, which is linked to the on-board LED.

6.4.1.3. Breadboard Wiring

The ESP32 can be plugged into a standard breadboard alongside the shift register IC.
We connect the Vcc, Ground, SER, RCLK, and SRCLK pins from the ESP32 to the shift
register. Each servo is connected to Vcc, Ground, and one of the outputs of the shift

126

register. This wiring scheme will be similar to the final one we use for the project, just
with fewer shift registers and motors.

Figure 60: Breadboard Wiring Diagram

6.4.1.4. Prototype Takeaways

From completing this prototype, we were able to verify the ability of the ESP32 to
control up to 8 servos simultaneously using a shift register and Micropython code. This
confirms many of the assumptions we made about our initial proposed project
architecture. The only problem we ran into was the slowness of the Micropython
runtime. For example, optimizing the code to do one less modulus operation was
enough to speed it up by 100 μs per operation, which suggests it can only do 10,000 of
these operations every second, which is much less than the 500,000 we assumed in our
initial time complexity analysis. Future benchmarking should be done to exactly quantify
the issue.

6.4.2. Controlling Servos with Arduino C, ESP32, and Shift
Register

This prototype is similar to the previous one, with a focus on rewriting the code in C to
investigate the effect on speed. The prototype above was only tested with 3 servo
motors, as that is all we have on hand. When controlling 30 servo motors at once, the
added slowdown could possibly cause the MicroPython code to no longer function. As

127

such, this prototype exists as a backup in case we are unable to get enough speed from
the MicroPython code.

6.4.2.1. Arduino C Code

This prototype is coded in Arduino C in the Arduino IDE. The code is exactly the same
as the code for the previous prototype, using the equivalent function calls wherever
possible. This allows us to easily compare the performance.

6.4.2.2. ESP32 Programming

The Arduino IDE has libraries available to download to allow for ESP32 programming.
First, we need to add the board manager URL for the ESP32 line of microcontrollers.
This is done by pasting
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_i
ndex.json into the additional board manager urls text box inside the preferences menu
of the Arduino IDE.

Figure 61: Arduino IDE Preferences Menu

Next, in the boards manager just above the board selection menu, we are able to
search for the ESP32 package and click install.

128

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

Figure 62: ESP32 Package in Boards Manager

Now we can select the ESP32 dev module and program it with the Arduino C code.

Figure 63: ESP32 Dev Module in Boards Manager

6.4.2.3. Prototype Takeaways

The most intensive part of the code was timed to benchmark the performance of C vs
Micropython running on the ESP32. Each loop ran in 270 μs in Micropython, and 1.5 μs
in C. This tells us that the C code ran 180x faster than the Micropython. We will
continue to use Micropython, but this result lets us know that we can always fall back on
programming the microcontroller in C if we need the extra speed to run the MIDI
processing algorithm in real time.

129

7. Prototype Testing & Evaluation

7.1 Hardware Testing
Testing is going to be key in this project to ensure things are working precisely. Each
piece will need to be tested differently and adequate through testing we will discover
certain things that were previously unknown issues that we will encounter and have to
deal with. For testing the different components we can test them independently in order
to make sure they work before implementing them into the entirety of the system.

7.1.1. Initial Motor Testing

Initially the testing for the servos will be fairly basic with the motor we will have them
wired to a power source and some control signal. The easiest way to ensure they work
when the specific signal is triggered is to attach it to a breadboard and a microcontroller
and give it power and a signal. Ideally what this will test for is to make sure that the
motor can get enough voltage and that it displays the correct characteristics when the
control signal is applied.

Since we are buying so many servos, it is important to confirm that they all function as
expected. Each servo may also respond slightly differently to the PWM signals, so we
need to find a range of duty cycles that works for all of them. Once we confirm that the
shift registers are operating properly, we can string 4 of them together to get 32
independently controllable outputs and hook them up to the 30 servos. Ideally, we would
cycle through all servo activation combinations in binary to confirm that they all work,
but with 30 motors that is way too many combinations. Instead it will likely be sufficient
to program a simpler sequence of activations. For example, we could turn all of the
servos on, then all of them off, then half on and half off, then the 1st and 3rd quarters
on, and the 2nd and 4th quarters off, etc. This should test a decent amount of output
interactions in a reasonable amount of time.

Part of our testing we can focus on is figuring out the amount of current that the servo
motors are using a digital multimeter in order to test our currents its important we test
our current in series vs parallel and we need to test our circuit from the power supply
and not the control wire of the servo motors.

7.1.1.1 Strumming Assembly Testing

To Test the strumming assembly we need to make sure that all six servos here are
capable of plucking strings and they are plucking the correct string for the note they are
trying to make. Also we need to ensure that the servo on the fret presses down before
the strumming servo. The strumming servo should not break after plucking the strings
and the strings should not snap as a result of the pick hitting it. We can test this by
running a simple program that just moves the servos to pluck the strings. If it does not

130

work we can decrease the force with the servo or print a shorter guitar pick for the
servos. The servos in the strumming assembly should also revert back to a certain
position after playback is finished with all picks facing down so that the user is aware
that the playback is over and to ensure that it does not interfere with the playback of the
next song.

7.1.1.2. Fretting Assembly Testing

To test the Fretting Assembly we need to ensure that the servos press down on the frets
with enough force to make the sound of the note without breaking the assembly that will
press on the fret or break the servo out of the assembly holding it to the guitar. Also the
frets need to be pressed down before the servos at the soundhole pluck the string and
hold down the string until the note is played then the servo should lift up from the fret.
The fretting assembly should also have its servos revert back to a default position after
playback for the same reasons as the strumming assembly and the pieces that hold
down the fret should be in an upward position.

7.1.2. Power Supply Testing

In order to ensure our power supply is giving us our adequate voltage and current
readings we can come up with our circuits and then recreate them on a breadboard and
use a 12 V power supply to simulate a battery. From there we can read our output
voltages to make sure we're getting readings that match our needs. Additionally before
bringing the circuit to life we can create the circuit digitally and test it to make sure our
circuit design is working according to our needs.

7.1.3. Integrated Circuit Testing

To ensure all of our ICs are fully functioning, it helps to make a testing board into which
each IC can be inserted and automatically evaluated. Such a board can be fashioned
from arduino kits that we already have.

7.1.3.1. Shift Register Testing

The shift register has a simple interface which can be connected to 3 pins from an
arduino. On a breadboard, we can place 8 LEDs with current-limiting resistors to
indicate which outputs are on or off at any given time. A good sketch for testing the
proper operation of the output would be a binary counter, as it systematically covers all
possible output combinations. It would also be a good idea to test the daisy-chaining
functionality of the shift registers. We could place 16 LEDs on the breadboard and test 2
shift registers at a time.

7.1.3.2. Motor Driver Testing

131

Instead of LEDs, we will need to test these drivers on actual motors. The arduino kits
we have come with some simple DC motors, but we only have 3. Therefore, we may
have to wait to test these components until we have purchased and received all the
motors we are going to use for the final project. Once we have those, the testing will be
very similar to the shift register testing; we can go through every possible combination
of motors being on and off by going through them all in binary. This may require the use
of the shift registers, which is not ideal since we would like to test each component
individually. Still, we can just test the shift registers first and then only test the motors
once we’ve confirmed that they work.

For now, we plan on using servos, which won’t need this IC to function. However, this
testing plan is a good backup in case we have to switch to a different type of motor later
in the project.

7.1.3.3. Bluetooth Testing

To test the Autonomous Guitars Bluetooth connection to the computer the LCD screen
on the PCB can just be made to read whether or not it was connected then write to the
screen if it either connected or did not connect, if it did not connect it will read nothing at
all and the front end on the PC or the phone will give an error if it does not connect. If it
does connect the screen will display “success” for the test.

We also need to test if we can send a MIDI file over Bluetooth Low Energy. This is
somewhat more difficult to test, we will need a way to interpret the MIDI file just as data
to read to ensure that it is on the microcontroller. An easy way that this can be done is
to transmit the file to the microcontroller then transmit the data back to the console on
the PC. This will ensure that the data is actually on the microcontroller, if there are any
issues using Bluetooth Low Energy it will not be difficult to switch to using regular
Bluetooth and repeating the test.

7.1.3.4. LCD Testing

To test the LCD all that needs to happen is it needs to be able to display every possible
state that was addressed above in the document, it also needs to display the song title
and display a timer during the playback. It will also need to switch between song titles
when the user changes the song on the user interface. It also needs to pause the timer
on the LCD if the user pauses the song and revert back to 0:00 when the user changes
the song.

7.1.3.5. PCB Testing

In order to test our PCB we will need to make sure all our hardware components will be
in the correct location and the correct orientation. We should have the orientation they
need to be in already determined due to previous planning. After we solder all our
components into the space they should be going to, this should be the last step on
setting up the PCB. Next we will have to test the PCB to make sure everything works. If

132

something ends up not working we will have to go back to make sure all the electrical
components are in the correct orientation which means we will probably have to use the
oven to remove pieces and reposition them. If that doesnt fix anything we have to go
back to the drawing books and redesign the PCB and ensure that the circuit works on a
breadboard. Ideally we get our PCB right the first time because if we have to order a
new PCB and design in it that will severely eat into the time as we have to wait for it to
ship before we can even begin testing anything.

Once we order and receive our custom PCB we will need to test it in various ways in
order to ensure all our functions are operating as intended. We will need to test to make
sure that the PCB can handle the amount of voltage and current that will be pushed into
it. In order to do that we can connect our PCB to a power supply and crank the voltage
up to 5-6 volts and about 8.1 amps which will be essentially our max voltage and current
ratings of our project so if our PCB can handle those without having something smoke
or burn would be a big win. Also we will then look to connect it to the ESP 32 and servo
motors. If we can turn it on with the power supply and have nothing to smoke
immediately that will be a good sign to continue. Next we will be looking to send signals
to the servo motors and if we can send signals to the servo motors that will be fantastic
and it will basically be our final test.

7.1.5. ESP32 Benchmarking

From earlier prototyping, we saw the need to benchmark the performance of the ESP32
processor operating under Micropython code versus Arduino C code. We wrote some
simple code that does 1 million multiplications and additions and measures the time
taken per operation. For the Micropython code, it took 19,373 nanoseconds per
operation, which is roughly 50,000 operations per second. For the Arduino C code, it
took 8.4 nanoseconds per operation, which is roughly 120 million operations per
second. The Arduino C speed more closely matches the expected speed of the
processor, and is 2,300 times faster than Micropython. There was some difficulty in
getting the Arduino C result, since C compilers like to make optimizations to simple tests
that pretty much make them instant.

7.1.6. Note Pitch/Frequency Testing

Guitar note pitch testing will be performed as follows:

1. Manual tuning of the guitar is performed by a human using the Pano Tuner guitar
tuning smartphone app and microphone to measure frequencies of open strings
beginning with low E string all the way up to high E, while adjusting tuning knobs
for optimal tension of the strings for standard tuning

2. Strumming motors are applied at exact forces decided for the operation of our
autonomous guitar and frequency is checked again using Pano Tuner

133

3. Now we move on to checking every possible fret position we can press down on
as per our requirements and checking the frequency is correct as intended

4. Now move on to sending entire chord combinations and checking the desired
frequency range of notes is played and able to be recognized by a human and by
Pano Tuner app

See evaluation section 7.2.1. for how these checks will be evaluated.

7.2. Hardware Evaluation
There will be several checkpoints in which must be checked in order for us to
determining our project a success:

● Our servo motors will not exceed the target area by not over rotating on the servo
motor

● The current supplied to each servo motor is around 200-250 mA without any
notice of heat

● Voltage at each of the points to ensure 5V can be read at all of the necessary
points

● We will ensure that our servo motors will not be exceeding 10 mA while idle to
ensure no false readings

● The motor mounting frame is stable and can hold the servo motors

● The wires are not interrupting with any fret pressing our interfering with the
strings

7.2.1. Note Pitch/Frequency Evaluation

134

Figure 64: Pano Tuner App from Google Play App Store
https://play.google.com/store/apps/details?id=com.soundlim.panotuner&hl=en_US&gl=

US&pli=1

Guitar note pitch evaluation will be performed as follows:

1. Given a single note either on an open string or played on a fretted position, or a
full chord as outlined in our testing section 7.1.5.

2. We check that the Pano Tuner smartphone app is able to register the note in
within +/- 10 Hz of the desired frequency. For example, as in the picture above
for the “A” (440 Hz) note we would check that our allowed frequencies are in the
“Green” zone of 430 - 450 Hz.

3. We will allow a +/- 15 Hz error for recognizing full chords due to the sensitive
nature of playing multiple notes at once on the instrument

The reasons for this possible range of error can be due to several factors including but
not limited to: temperature, air pressure, string material, overall build quality of the
guitar, echo, resonance of the room, quality of the smartphone microphone, and
ambient noise; all of which we have identified as negligible factors to the overall
success of our project. We believe it is reasonable to flag a failure only if notes are
played in the invalid range of over +/- 10 Hz from the true values as then it is much
more likely that this was due to an error on our parts and we will revisit our software and
hardware components to try and find, isolate, and fix the cause of the failure.

135

https://play.google.com/store/apps/details?id=com.soundlim.panotuner&hl=en_US&gl=US&pli=1
https://play.google.com/store/apps/details?id=com.soundlim.panotuner&hl=en_US&gl=US&pli=1

7.3 Software Testing
We can easily simulate real MicroPython code on the Unicorn CPU emulator provided
by https://micropython.org/unicorn/ for starting software development and testing before
the parts have actually arrived, reducing one of our main anticipated blockers on
progression on the software side of things.

Figure 65: Unicorn CPU Emulator for MicroPython https://micropython.org/unicorn/

Our testing plan will comprehensively test:
● Sending servo motor control signals according to our algorithm
● Playing multiple notes/strings at once
● A simple song such as “Twinkle Twinkle, Little Star”

7.4 Software Evaluation
● We will check that each note’s sustain is within a 5% margin of error of what it

should be as per our requirements

● We will check the timing between notes, or delay, within 5% margin of error as
well, as per requirements

● We will check that we are able to hit our design requirements of playing at least 2
notes per second per string by sending generated MIDI data of 2 fully fretted bar
chords each second

● We will check that we are fully able to upload and store 10 songs on the
microcontroller device

136

https://micropython.org/unicorn/
https://micropython.org/unicorn/

8. Project Operation
The autonomous guitar’s full project operation is as follows:

Figure 66: File Upload in Project Operation

1. On a computer, there will be a UI screen with options to upload a file as well as
clickable “Play”, “Pause”, and “Stop” buttons. And a song selector drop-down for the up
to 10 uploaded songs that can be stored on the device.

2.1 User picks a song of their choice from the ones already on the device OR
2.2 Downloads a new MIDI file for it off any database online OR
2.3 Records their own MIDI file

3. If a new file is added, the user can click the upload button on the UI to upload the file
to our microcontroller via bluetooth.

4. The user can then click the “Play” button on the UI and watch their song come to life
on the autonomous guitar.

5. By default, they can either let the song play to the end or click “Pause” / “Stop” if they
would like to halt it earlier.

8.1. Operating Modes
The Autonomous Guitar will have 2 operating modes one is a regular mode where the
MCU will wait for the user to upload a song onto it and then wait for the the user to push
play on the device the microcontroller should be able to hold multiple songs on it until
it’s memory is full. The user should be able to select the song they want to play; they

137

can cycle through songs on the user interface and then the song title will show up on
the LCD screen on the guitar. The song will then play to completion or whenever the
user wants.

The autonomous guitar will also have a tuning mode, since it will be difficult for the user
to pluck the string when the assembly is attached and we do not want the user to
remove the assembly unless necessary, the autonomous guitar will have a mode where
the guitar will pluck a string repeatedly until the user finds the correct tune for the string
and then move to the next string and repeat the process until the user tunes all six
strings. The LCD screen will show “TUNING MODE” on the screen and will show which
string number is currently being tuned. In the event that a string on the guitar does
break due to operator error or just from being played extensively the assembly on the
soundhole and the neck will need to be removed to replace the string.

8.2. Error Correction
There are potential issues that the autonomous guitar can have that will be of potential
concern, one such issue is that it will be possible for the microcontroller storage to fill up
and no more songs can be placed on it this is the issue that we believe will happen the
most often and it is detectable by our software, so we can inform the user that it is a
problem so that they can delete some songs in the microcontroller. The LCD screen on
the guitar will display “LOW MEM” even though we do not perceive this happening often
due to the fact that MIDI song files are around 30 KB and the microcontroller can
contain 4 MB of data.

The concern that we can see will happen more frequently is the bluetooth connection
failing or cutting off, if this does happen the autonomous guitar should keep playing the
song it is playing if it is currently playing a song since this function does not require the
bluetooth connection, otherwise the no new songs can be uploaded to the
microcontroller until the connection is restored. While waiting for the connection to
re-established the LCD screen will show the message “PAIR READY” until a connection
is made. This message will show anytime the guitar does not have a bluetooth
connection.

There are also things that the autonomous guitar will not be able to know about such as
a string or a pick breaking in this case no error message can be shown but an
observant user will notice one of strings or picks breaking since they will not be
completely covered and the picks will be replaceable without removing the assembly or
the servo.

138

9. Administrative Content

9.1. Division of Labor
Pedro Contipelli

● Reading MIDI data in Python
● Full algorithm

○ Processing Notes
○ Range Compression
○ Overlapping notes/tracks
○ Converting notes to fret/strumming motor output positions\

● Buying and inspecting guitar
● Web app UI and functionality
● Cross-platform mobile app UI and functionality

Ethan Partidas & Blake Cannoe
● Choose microprocessor
● Port algorithm to microprocessor
● Write code for motor control pins

Jonathan Catala & Kyle Walker
● Setup, electronics, wiring, hardware, etc
● Planning schematic and board layout for PCB
● Ensuring DC to DC converter has correct power output
● Ensuring power is supplied to motors

139

9.2 Project Milestones

9.2.1. [Fall] Senior Design I

Date Milestones

10/7/22 (CS) TA Check-In & (CS) Assignment #3 & (ECE) D&C 2.0 Submission

10/14/22 Design Plans / 15-pages written

10/21/22 Dr. Leinecker Status Meeting Check-In / 15 pages written

10/28/22 50 pages of design document

11/4/22 (ECE) 75-page report submission / (CS) Assignment #4 Due 11/6

11/11/22 100 pages design document written

11/18/22 (ECE) 125-page report submission

11/25/22 Begin Design Implementation / 135 pages

12/2/22 Schematic complete and Documentation revision / 150 pages

12/5/22 (CS) Final Design Document Due

12/6/22 All parts ordered

Table 15: Project Milestones for Senior Design I (Fall 2022)

140

9.2.2. [Spring] Senior Design II

Date Milestones

1/13/23 MIDI File Research - (Pedro)
Receive ordered parts - (ECE team)

1/20/23 MIDI File Reading Algorithm - (Pedro)

1/27/23 Core Note-playing Algorithm and Simulation - (Pedro)
Single String strumming and fretting - (ECE team)

2/3/23 Finalization of algorithm and software tests - (Pedro)
Strumming and Fret Assemblies hooked to microprocessor - (ECE team)

2/10/23 Software-Hardware Interface Connection - (Whole team)

2/17/23 Project Prototype & Requirements Revision - (Whole team)

2/24/23 Minimum Viable Product Finished - (Whole team)

2/28/23 C.D.R. (Critical Design Review) presentation with professors

3/3/23 Implement Demo Feedback - (Whole team)

3/10/23 Testing / Integration - (Whole Team)

3/17/23 Testing / Integration - (Whole Team)

3/24/23 Finalize Presentable Project

3/31/23 Stretch Goals / Buffer Time

4/7/23 Stretch Goals / Buffer Time

4/14/23 Stretch Goals / Buffer Time

4/21/23 Stretch Goals / Buffer Time

Table 16: Project Milestones for Senior Design II (Spring 2023)

141

9.3 Gantt Charts

9.3.1. Senior Design I [Fall 2022]

Figure 67: Senior Design I (Fall 2022) Tasks Gantt Chart

9.3.2. Senior Design II [Spring 2023]

Figure 68: Senior Design II (Spring 2023) Tasks Gantt Chart

142

9.4 Budget/Financing
Used Acoustic Guitar: < $30
Microprocessor: < $20
Misc. Electrical components: < $10
Motors for frets and strumming: < $60
Filament for 3D Printer < $5

9.4.1. Bill of Materials

Item Quantity Price per unit Price

Used Acoustic
Guitar

1 $30 $30

Microprocessor
(ESP32)

1 $7.00 $7.00

Misc. Electrical
components

1 $5 $5

Micro-servo
Motors

30 $2 $60

74HC595N shift
register

9 $1 $9

1602 LCD 1 $7 $7

Table 17: Bill of Materials

143

10. Project Summary & Conclusions

10.1. Project Summary
The goal of our project is to create an autonomous self-playing guitar that is able to
produce its own music. We plan to buy the actual guitar and electronic components
such as motors and microprocessors, but everything else must be pretty much built
from scratch. We have analyzed and thought about design concepts utilized by
other/previous similar projects which have inspired us, and plan on improving upon
them to create a project that is fully our own.

The system would be able to take in any MIDI audio file within our design constraints
(other file types can always be converted to MIDI beforehand) and play the notes on the
guitar using a microcontroller with separate mechanisms for strumming and pressing
the right strings against the right frets at the right time. It would be lightweight and
maintain the general form factor of the guitar (i.e, fits closely to the body). The design
should ideally be portable, and thus it would be powered by portable batteries. It should
be responsive enough to accurately replicate the provided MIDI file compositions,
comparable to - if not exceeding - the abilities of the average learnt guitar player. Not
only should this design be lightweight and portable, an issue with similar concepts is the
price and size. They are typically not an attachment for a guitar and are more commonly
an entire unit within the guitar. They are also extremely expensive with some models
going for up to $1,100. Our goal for this project was to bring this idea to reality for
significantly cheaper.

10.2. Design Summary
Our Self-Playing Guitar project setup consists of an acoustic guitar outfitted with servo
motors that will strum and fret the guitar to play a song that has been uploaded to the
system as a MIDI audio file via Bluetooth. The MIDI file will be interpreted by software
written to an ESP32 Microcontroller using MicroPython, taking in the file and using a
custom algorithm which preprocesses the song’s notes data, compresses it to fit the
playable range of notes on our guitar, and then operates the servos in conjunction with
that data in realtime to play the song that was selected.

The project’s controller will be on a separate device (accessible via web or mobile app)
which will handle song selection, file uploading, playing, pausing, and stopping via
Bluetooth communication to the microcontroller.

The project’s mechanical assembly consists of a strumming assembly with 6 servos
placed over the guitar hole and 24 servos for the fretting assembly placed along the
neck. The strumming assembly servos will swivel in order to pluck each string
independently from one another, allowing for any combination of strings to be played at
once. The fretting assembly servos will rotate linear actuators, acting as pistons, to

144

press down each string, with the 24 servos spanning across 3.5 octaves of the range of
the guitar.

The project’s main electronic assembly consists of two PCBs; one containing a voltage
regulator for the power supply of the motor assembly, and one containing the ESP32
mounted along with the voltage regulator for its power supply input. The latter PCB will
also output the pulse width modulation signals used for controlling the motor assembly.

See Figure 2: Functional Class Diagram in Section 2.7 for a high-level overview of our
complete design.

10.3. Engineering/Design Conclusions
As Winston Churchill once said, “He who fails to plan is planning to fail.” One definitive
conclusion we’ve taken from writing this design document is how important it can be to
plan, design, write things down, prototype, and think things through before jumping into
the fire. It’s already helped us avoid plenty of failures and missteps which could have
led us down a wrong path that might not have worked out. Another conclusion that
closely ties into this, is about how important it is to have good, solid, robust
requirements. It really wasn’t until we sat down and started listing all of our project’s
requirements that we were able to really get a good idea of all the things that would
have to be implemented and what kind of scope / big picture problems we’d be having
to address.

We have also come to learn a great deal about teamwork and coming together to
achieve a common goal. We succeeded in meeting our goals/requirements and
leveraged all of our team members' strengths to create something that none of us could
have done individually. Everyone contributed something, and we can confidently say
that this wouldn't have been possible without each other's help. Working together also
helped to mitigate our own personal biases and weaknesses, helping each other notice
and correct flaws, giving good feedback to each other when it was most necessary.

10.4. Philosophical Conclusions
Philosophical conclusions can be drawn from this project about the very nature of what
constitutes science, technology, engineering, or mathematics and what constitutes art
and if they can, at times, both be one and the same. Certainly a conclusion that our
group has drawn from this project is that there really is a deep connection between the
two (we have built this project to bring to life a part of that bridge/interface). We’ve
learned not just that we are creating art with technology, but that properly designing and
implementing technology is an art itself. And we have come to a greater appreciation for
well-implemented and thought-out engineering specifications, requirements, and design.
As well as come to a newfound appreciation for music and musicians, more specifically
the immense amount of practice, talent, dexterity, timing, and coordination it takes for a
human being to be able to play this instrument using their own brain and hands.

145

The limitations and achievements of what we could accomplish with this design
naturally brought us to think about machine intelligence and many of the analogous
connections between computer processors and the human brain itself. About how they
can both achieve many of the same goals and operationally solve similar problems, yet
are and have to be implemented entirely differently in most if not all areas of design.
Our linear actuators powered by servo motors and the mount we’re using to hold them
in place are analogous to the muscles, joints, and ligaments in the human arm, hands,
and fingers in that they work together to accomplish the same overall goal, but each
individual part can serve drastically different functions not to mention the way that they
interoperate across themselves.

And yet, even in and amongst all of the nuance and complexity in the differences
between the two, a human without understanding even a single part of the way the
technology is implemented, can see, hear, and feel all of that difference in the music. It
is extremely easy to tell the difference between an autonomous guitar playing vs. when
a human is playing it because autonomous guitars result in giving us this sort of
staccato 8-bit/16-bit NES sound that is unlike what it sounds when a human is playing.
For example, it can be heard in Demin Vladimir’s Guitar Robot playing the main theme
from Pirates of the Caribbean: https://youtu.be/n_6JTLh5P6E.

Even if the autonomous guitar can be better than a human at doing certain tasks, such
as when having perfectly precise timing down to the millisecond without ever making a
mistake or playing a wrong note, and always having a consistent measurable way to
press down on each fret with the same amount of force each time, playing each and
every single note perfectly and consistently the same way every time. It fails at one
thing: which is sounding like a human. Because humans are imperfect and imprecise
and we play, hear, and feel music in a way that is different and can be individually
meaningful for different reasons to ourselves and the others around us listening. We
play instruments for so much more, because it is in our nature to think and be creative
and express ourselves. Whereas a machine can play music for no more than the simple
fact that it was programmed to do so.

Still, the genre and range of music that autonomous guitars can produce, sounds
beautiful to us group members in its own right and category. We’ve learned it is not
about which of man or machine is necessarily better or worse than the other, but more
about widening the range of what we can accomplish symbiotically when working
together and understanding and appreciating the best of both worlds.

146

https://youtu.be/n_6JTLh5P6E

11. Broader Impacts
The main impacts of this project are entertainment for public engagement in STEM
areas, whether it be for a live audience or a global audience via recording/uploading on
YouTube. We are pushing against the barrier to entry for making live music on an
instrument, by putting our engineering brains together and distributing the work. We’re
giving us and our audience the experience of listening to live music without needing the
skill of a master who has practiced playing that instrument for dozens of years, which
can be hard to come across.

We are hoping that by showing people just a taste of what is possible when an
engineering team works together to accomplish a task, we can make the public as a
whole more interested and educated in STEM (Science, Technology, Engineering, and
Mathematics) and its extremely wide range of applications, even in a field as
“far-fetched” as music. We hope to possibly inspire the next generation of engineers to
dream big and pursue their own passions by showcasing that STEM can be
interdisciplinary and interact with so many different subjects even as “different” as music
or art. With this project, we hope to accomplish creating a spark of interest and wonder
in the eyes of the future generations just as others before us have inspired us with their
own projects.

147

12. Legal, Ethical, and Privacy Issues

12.1. Legal Issues
We have anticipated and considered the potential legal issue of needing to secure a
mechanical license for any copyrighted songs which we plan on using for demonstration
purposes, whether that be for live demonstrations or recordings uploaded on YouTube.
As per our current research, the potential legal ramifications we have identified would
be in the case of posting our “cover” on YouTube, which may lead to our video getting
removed or a deal being negotiated with the copyright owner to obtain revenue from ads
displayed on our video, or in the worst case scenario, a strike being placed on the
YouTube channel from which it was uploaded. As per live non-recorded demonstrations,
there is no legal precedent specifically pertaining to autonomous guitars, however the
current interpretation is that it would essentially fall under the same category or be the
legal equivalent of a human playing a song on the guitar in public, which is perfectly
fine.

“Some copyright owners don’t mind YouTube covers—they increase a song’s exposure
and may introduce a new audience to the songwriters’ or original performer’s music. If
songs are posted by fans, a band isn’t likely to risk alienating them by taking down their
videos. Other copyright owners object to unlicensed use of their work. A few years ago,
Prince famously had YouTube remove a video that showed a toddler dancing to one of
his songs.

If a copyright owner objects, YouTube may remove your video or it may negotiate a deal
for the copyright owner to obtain revenue from ads that appear on YouTube. If YouTube
removes the video for copyright issues, it will also place a strike against your YouTube
channel. After multiple strikes, YouTube will delete your channel, along with the videos,
subscribers, likes, views and comments. If you’ve worked hard to cultivate your channel,
this can be devastating.”
Source:https://www.legalzoom.com/articles/posting-cover-songs-on-youtube-what-you-n
eed-to-know

12.2. Ethical Issues
We will be referencing and complying with the A.C.M. Code of Ethics and Professional
Conduct (https://www.acm.org/code-of-ethics) throughout the process of planning,
designing, prototyping, building, testing, and evaluating our project.

12.3. Privacy Issues
At the moment, we do not anticipate encountering any privacy issues as our project
does not perform user data collection of any kind.

148

https://www.legalzoom.com/articles/posting-cover-songs-on-youtube-what-you-need-to-know
https://www.legalzoom.com/articles/posting-cover-songs-on-youtube-what-you-need-to-know
https://www.acm.org/code-of-ethics

13. Facilities and Equipment
Through completing this project we have gained several experiences through various
labs throughout the campus. While completing the courses we have taken in exploring
our majority has given us several skills we will be implementing in our senior design
project. Previous labs have given us several skills that range from circuit design to
programming.

In some of the electrical engineering labs it was more focused on circuit design and
troubleshooting the circuits. We have gained experience using breadboards which will
apply to us designing and testing our schematic. We will hook up our circuit looking for
various voltage and current readings. This is a vital skill and important in all senior
design projects.

In some other computer engineering classes we got to see how programming can be
used to complete tasks. This involves programming hardware and implementing
different code languages and it will help us a lot when we will need to be programming
our microcontroller. This is what controls the servo motors and anything else we need
control signals for. As far a programing hardware it is has been extremely important in
terms of our education and growth as engineers.

13.1. Facilities
The facilities we will be using include:

● HEC 102 (Computer Science Senior Design Lab)
● ENG1 456 (Electrical and Computer Engineering Senior Design Lab)
● ENG Manufacturing Lab (https://www.cecs.ucf.edu/manufacturing-lab/)
● Pedro Contipelli’s current residence in Oviedo, FL

149

https://www.cecs.ucf.edu/manufacturing-lab/

13.2. Equipment and Materials

13.2.1. George Washburn Lyon Acoustic Guitar

Figure 69: George Washburn Lyon Acoustic Guitar

This will be the guitar in which the final project is completed as well on which all tests
will be run. We chose and bought this guitar as it was available and within our budget of
$30. We will implement this project with the exact specifications necessary to make it
work only on this guitar. While there is the possibility of generalizing our design to fit
other guitars in the future, many of our project-specific parameters would have to be
modified.

13.2.2. 30 Micro-Servo Motors

150

Figure 70: Micro-Servo Motors Purchased

We will buy 3 packs of 10pc. Miuzei Micro Servo Motors Kits. The micro-servos will be
what a bulk of our project is reliant on. We will be using them in various ways from
strumming to pressing down on frets. Depending on what function they need to do, they
will be placed at different locations along the guitar. We will have 6 dedicated to
strumming the 6 strings and 24 used for pressing frets.

13.2.3. ESP32 2.4 GHz Dual Core WLAN WiFi + Bluetooth
Microcontroller 38PIN Narrow Version

Figure 71: ESP32 Purchased

151

The ESP32 is the microcontroller we have decided to use for our project. This board is
going to allow us to control the servo motors as well as interpret our data, the ESP32 is
the nucleus of our project.

13.2.4. Breadboard

The breadboard for our project will primarily function as our main test circuit we will be
able to test our circuits on there by wiring up everything and ensuring that our circuits
work before we bring them over to the PCB

13.2.5 24 3D-Printed Linear Actuators for MG90s Servo

Figure 72: 3D-Printed Linear Actuator GrabCAD by Luca Delbarba Feb 28th 2022

With the servo motors in order to achieve that pressing action we are looking for we will
need some sort of linear motion. This will be from linear actuators we can 3D print and
attach to the servo-motors and then we will be able to press down on the frets while we
strum, similar to how a human would play the guitar. This simple crank rod mechanism

152

with SG90s servo should serve our purpose well. A small 8x3x4.25 ball bearing is used
as the piston. Giving us approximately 20 mm of axial movement of the cylinder.

13.2.6 Custom-Designed PCB

Our PCB will be constructed once we have our circuits finalized and working with the
entirety of the projected and thoroughly tested on the breadboard. Once the PCB is
designed it will be able to handle all our circuit needs and provide the power to all the
correct loads.

13.2.7. 4 Shift Registers (74HC595N)

Shift registers are what we use to flip our control signal from one position to the other
through a series of flip flops

Figure 73: Example Shift Register Render

153

13.2.8 Power Supply

Our power supply will be used to power our entire project. We need to make sure our
power supply is able to supply the proper current to all the servos needed. It will be
tested using the breadboard and then be implemented to the final PCB design.

13.2.9. Oscilloscope

The oscilloscope will allow us to test different voltage points throughout the circuit. This
will be one of the ways we will be able to troubleshoot our project as far as the voltage
is concerned.

Figure 74: Example Oscilloscope used for Debugging

13.2.10. Digital Multimeter

We will be able to use the multimeter in order to test voltages and currents easily. This
will be our best way to test our currents to make sure that our currents are what we
expect them to be.

13.2.11. Other Miscellaneous Electrical Components

154

We will be using typical electrical components in our project such as resistors,
capacitors, and inductors in order to complete our circuit. These items can either be
purchased or found in the senior design lab depending on the values able to be found.

13.2.12. Universal Laser Cutter & Dimension 3D Printer

Figure 75: TI Innovation Lab Equipment
https://www.cecs.ucf.edu/innovationlab/equipment/

155

https://www.cecs.ucf.edu/innovationlab/equipment/

14. Consultants, Subcontractors, and Suppliers
At the moment, we do not anticipate needing to connect with any 3rd party consultants,
subcontractors, or suppliers outside of resources that are already here and provided for
us at UCF. We will be getting help from the TI Innovation lab and Manufacturing lab
TAs/technicians for assistance using 3D printer and laser-cutting equipment.

Figure 76: TI Innovation Lab in Engineering Building at UCF
https://www.facebook.com/photo/?fbid=1556858027919411&set=pb.1000689019
99309.-2207520000

156

https://www.facebook.com/photo/?fbid=1556858027919411&set=pb.100068901999309.-2207520000
https://www.facebook.com/photo/?fbid=1556858027919411&set=pb.100068901999309.-2207520000

Appendices

Appendix A: References
1. Table 5: Comparison between WiFi, Bluetooth, and BLE

https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.intel.com/content/www/us/en/support/articles/000005725/wireless/leg
acy-intel-wireless-products.html

2. Figure 1: Playable Note Range for Requirement Specifications
https://yousician.com/blog/guitar-fretboard-learning-guide

3. Figure 13: Fret Override
https://nationalguitaracademy.com/how-to-play-bar-chords/

4. Figure 18: Assembly for conversion of rotational servo motion to linear actuation
https://www.youtube.com/watch?v=MeILaIGI1es

5. Figure 52: MIDI Representation Visualized
https://blog.landr.com/what-is-midi/

6. Figure 53: Playable Note Range Visualized on Piano (Synthesia)
https://synthesiagame.com/

7. Figure 59: Cross-Platform Mobile App Example using Flutter
https://flutterawesome.com/a-easy-to-use-and-customizable-material-flutter-butto
n/

8. Figure 64: Pano Tuner App from Google Play App Store
https://play.google.com/store/apps/details?id=com.soundlim.panotuner&hl=en_U
S&gl=US&pli=1

9. Figure 65: Unicorn CPU Emulator Testing for MicroPython
https://micropython.org/unicorn/

10.Figure 75: TI Innovation Lab Equipment
https://www.cecs.ucf.edu/innovationlab/equipment/

11. Figure 76: TI Innovation Lab in Engineering Building at UCF
https://www.facebook.com/photo/?fbid=1556858027919411&set=pb.1000689019
99309.-2207520000
https://www.cecs.ucf.edu/manufacturing-lab/

https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.intel.com/content/www/us/en/support/articles/000005725/wireless/legacy-intel-wireless-products.html
https://www.intel.com/content/www/us/en/support/articles/000005725/wireless/legacy-intel-wireless-products.html
https://yousician.com/blog/guitar-fretboard-learning-guide
https://nationalguitaracademy.com/how-to-play-bar-chords/
https://www.youtube.com/watch?v=MeILaIGI1es
https://blog.landr.com/what-is-midi/
https://synthesiagame.com/
https://flutterawesome.com/a-easy-to-use-and-customizable-material-flutter-button/
https://flutterawesome.com/a-easy-to-use-and-customizable-material-flutter-button/
https://play.google.com/store/apps/details?id=com.soundlim.panotuner&hl=en_US&gl=US&pli=1
https://play.google.com/store/apps/details?id=com.soundlim.panotuner&hl=en_US&gl=US&pli=1
https://micropython.org/unicorn/
https://www.cecs.ucf.edu/innovationlab/equipment/
https://www.facebook.com/photo/?fbid=1556858027919411&set=pb.100068901999309.-2207520000
https://www.facebook.com/photo/?fbid=1556858027919411&set=pb.100068901999309.-2207520000
https://www.cecs.ucf.edu/manufacturing-lab/

12.Section 3.1.1. Denim Vladimir’s Guitar Robot
https://youtu.be/n_6JTLh5P6E

13.Section 3.1.2. TECHNICally Possible’s Lego Mindstorms Guitar
https://youtu.be/cXgB3lIvPHI

14.Section 4.2.1.8.1. PCB Standards - Common-Emitter Circuit
https://www.protoexpress.com/blog/ipc-2221-circuit-board-design/

15.Section 4.2.1.1. MIDI Audio Storage Standard
https://www.midi.org/specifications/midi-2-0-specifications/midi2-core

16. Section 5.2.5.1. Micropython and C integration
https://docs.micropython.org/en/v1.19.1/develop/cmodules.html

Appendix B: Copyright Permissions
For the purposes of our project, we have not needed to secure any copyright
permissions, as discussed in section 12.1. Legal Issues.

Appendix C: Purchase Links
10 Servos for $20:
https://www.amazon.com/Dorhea-Helicopter-Airplane-Walking-Compatible/dp/B08FJ27
Q1H/ref=sr_1_6?keywords=micro+servo&qid=1667483173&qu=eyJxc2MiOiI1LjU3Iiwic
XNhIjoiNS4yNCIsInFzcCI6IjQuNzYifQ%3D%3D&s=toys-and-games&sr=1-6

ESP32 Development Board:
https://www.amazon.com/KeeYees-Internet-Development-Wireless-Compatible/dp/B07
HF44GBT

Appendix D: Datasheets
Microcontroller
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

74HC595N Shift Register
https://www.ti.com/lit/ds/symlink/sn74hc595.pdf?ts=1667432577048&ref_url=https%253
A%252F%252Fwww.google.com%252F

https://youtu.be/n_6JTLh5P6E
https://youtu.be/cXgB3lIvPHI
https://www.protoexpress.com/blog/ipc-2221-circuit-board-design/
https://www.midi.org/specifications/midi-2-0-specifications/midi2-core
https://docs.micropython.org/en/v1.19.1/develop/cmodules.html
https://www.amazon.com/Dorhea-Helicopter-Airplane-Walking-Compatible/dp/B08FJ27Q1H/ref=sr_1_6?keywords=micro+servo&qid=1667483173&qu=eyJxc2MiOiI1LjU3IiwicXNhIjoiNS4yNCIsInFzcCI6IjQuNzYifQ%3D%3D&s=toys-and-games&sr=1-6
https://www.amazon.com/Dorhea-Helicopter-Airplane-Walking-Compatible/dp/B08FJ27Q1H/ref=sr_1_6?keywords=micro+servo&qid=1667483173&qu=eyJxc2MiOiI1LjU3IiwicXNhIjoiNS4yNCIsInFzcCI6IjQuNzYifQ%3D%3D&s=toys-and-games&sr=1-6
https://www.amazon.com/Dorhea-Helicopter-Airplane-Walking-Compatible/dp/B08FJ27Q1H/ref=sr_1_6?keywords=micro+servo&qid=1667483173&qu=eyJxc2MiOiI1LjU3IiwicXNhIjoiNS4yNCIsInFzcCI6IjQuNzYifQ%3D%3D&s=toys-and-games&sr=1-6
https://www.amazon.com/KeeYees-Internet-Development-Wireless-Compatible/dp/B07HF44GBT
https://www.amazon.com/KeeYees-Internet-Development-Wireless-Compatible/dp/B07HF44GBT
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.ti.com/lit/ds/symlink/sn74hc595.pdf?ts=1667432577048&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/sn74hc595.pdf?ts=1667432577048&ref_url=https%253A%252F%252Fwww.google.com%252F

Servo

From SG90 micro-servo datasheet

